Introduction

1 Introduction

1.1 Learn Game Design Patterns by Remixing a MakeCode

Platformer

This course is built on the simple idea of starting with a platform game and adding familiar game
patterns and features. The resources here are part of a learning model which has the following

elements:

« Game Making MISSIONS main missions involve choosing authentic game making design

patterns from a menu. Other side missions help with engagement of different making

preferences.

« A MAP of Learning Outcomes particularly suited to digital game making, presented in an

accessible format to teachers and learners.

« Design METHODS are techniques that facilitators and learners can use to help navigate

the process of making a game and reflecting on what is being learned in the process.

If you find mistakes in this resource or want to contribute please start an issue here.

1.1.1 Remix a Starting Game Template

A fun way to start coding and game making is to remix a starting template of a Platform Game by

adding in different features which we call Game Patterns

missions
/docs/1_introduction/gamepatterns
https://makecode.com/_FqWD64MxEiRi
https://github.com/mickfuzz/makecode-platformer-101/issues
methods
learningDimensions

Starting Game To Remix Patterns to Add to Game

Game Mechanics

5

Game Mechani i Game Mech:

T

il L e L

S A
e wTe

CO A R T Rt e O

R e e e R L R e e e

1.1.2 Step by Step Instructions from First Principles

Another way to learn coding from first principles is to learn how to make the sample game from

scratch and you can do that by following the following tutorials made with the MakeCode

tutorial system.

Introduction Creating your Player Character

To create your character. Drag the BRIt (Rl At g into

the block. Click on the blank square and choose a player from the

Gallery. What about a duck? Anything in the block runs when the game
ctarte

Iites
ntroller
set mySprite * to sprite @ of kind Player »

ene

fo

tutorial

Part One - Create a Player character - Move the Player element around the screen - Create a

Game Space using platforms using the tilemap tool - Add Food to collect using the tilemap tool

Part Two - Adding an end goal that you must touch to win game - Make it so you must collect all

Food to win game - Creating a larger Game Space - Adding Levels - Adding a Timer

https://arcade.makecode.com/beta#tutorial:https://github.com/mickfuzz/mca_platformer_tutorial/fullTutorial
https://arcade.makecode.com/beta#tutorial:https://github.com/mickfuzz/mca_platformer_tutorial/fullTutorial

follow the tutorial online here

1.1.3 Follow an Example Course

There is material here for a five session course on game making. * Session Materials to run with

a group of participants

1.2 About the MakeCode Arcade Tool

ome are 0Ccks |9 BVdE[[IDt
H Sh & Block {} JavaScri

A Sprites
Controller

G —oe (ETRED) sath [itiens v vy o ®

Music set mySpritew ay (acceleration y)¥ to @

Scene set mySpritew position to x @ y

Info camera follow sprite mySprite
p ySp!

Loops set background color to .

Logic
g set tilemap to

Variables

BB Microsoft @ LR

(= = =] =[= « [N R

set mySpritew to sprite @ of kind Playerw

@™
[]
T
%
=
&
e

call createlevels

makecode layout

This course uses MakeCode Arcade as its tool. There are several advantages to this tool.

Like Scratch the block coding tool reduces chances of getting stuck with code syntax

errors

« Unlike scratch it is created with arcade like games in mind and includes relevant tools like
acceleration for gravity

« There are fun hand-held devices you can easily play your game on. Great for group

playtesting.

« The support and making community is small but very friendly and responsive

https://mickfuzz.github.io/makecode-platformer-101/groupCourse
https://mickfuzz.github.io/makecode-platformer-101/groupCourse
https://arcade.makecode.com/beta#tutorial:https://github.com/mickfuzz/mca_platformer_tutorial/fullTutorial

a hand held device

The shape of this course could be applied to any game making platform. In fact there are similar

courses available see Phaser Game Making (Javascript) and Making Serious Games in Scratch

1.3 Ideas behind this Course

This ethos of this course is broadly in-line with concepts of Project Based Learning. More

specifically here’s how some of those ideas come into focus with this material.

1.3.1 Learning via Hands-on Tinkering

This intention of this course is not to teach the underlying concepts of computer science from
first principles. Here the idea is to build competency with the practicalities of using the coding
tool. In an art studio students start by experimenting with materials and getting to know their

tools first. Large concepts come later.

1.3.2 Playful Learning

Many sessions start with games and the overall ethos is to try to encourage an informal
approach to learning which prioritises a positive connection to the making experience over

absorbtion of testable curriculum knowledge.

https://mouse.org/seriousgames
https://en.flossmanuals.net/phaser-game-making-in-glitch/_full/

1.3.3 Promoting Participant Choice and Self-Directed Learning

The use of a menu of Game Patterns as the hub of our learning allows and encourages the
course participants to set their own goals and to monitor their own progress. It is also flexible
enough to provide materials for those who want to learn concepts in a structured way although

it priorities opportunities for more messy approaches to learning.

1.3.4 A Restricted Set of Learning Dimensions

To encourage messy, experimental learning many of the computer science concepts that it
would be possible to teach are intentionally put into the background to prioritise a inclusive
process. Care has been taken to reduce the number of concepts and patterns in these areas to a

manageable amount.

In addition to these subject related learning dimentions, there are notes on process related
learning dimensions outside of subject knowledge that may be useful to facilitators and parents.

These include:

+ Coding Concepts: mechanics of coding including using variables, loops, lists, logic,

different types of data, input events and creating functions.

- Design Practices: including goal setting, creating, testing and reflecting.

« Systems Patterns: systems dynamics and different types of feedback loops.

1.3.5 Starting with the Familiar, Zoom into Detail, Zoom out to Wider Patterns

The starting point for participants of this course are the Game Patterns of a platform game which

are likely to be familiar to them from exposure to family oriented video consoles or mobile
games. Through the process of adding these patterns to their games, participants will come into

contact with Coding Concepts needed to enact these features using the specific tools of the

MakeCode system. In this way the Zoom into the Detail needed to make ideas into reality.

In the same process course participants also have the chance to connect the more immediate

learning in the context of games to Wider Patterns of Computing and Systems. While this is not

explicitly taught, parents and facilitators Zoom out to point out how the concepts and patterns

6

https://mickfuzz.github.io/makecode-platformer-101/learningDimensions#wider-patterns
https://mickfuzz.github.io/makecode-platformer-101/learningDimensions#coding-concepts
https://mickfuzz.github.io/makecode-platformer-101/gamePatterns
https://mickfuzz.github.io/makecode-platformer-101/learningDimensions#systems-patterns
https://mickfuzz.github.io/makecode-platformer-101/codingConcepts#design-practices
https://mickfuzz.github.io/makecode-platformer-101/learningDimensions#coding-concepts

in Games can be applied in other fields, for example those of Interactive Media Design and

Systems Thinking.

Systems
Thinking
Coding Game
Concepts Patterns
Computing
Patterns

Wider and Narrower Patterns

1.4 Where to get started?

If you want to get started or begin to investigate what is available the following links will help

you.

« View a graphical menu of Game Patterns which contains a short intro on how to apply

them to the starting game template

« Get an overall understanding of the starting game template with the step-by-step tutorial

« Browse the Group Course contents or start to work your way through the individual

online course

+ Check out the potential Learning Dimensions of this project

https://mickfuzz.github.io/makecode-platformer-101/learningDimensions
https://mickfuzz.github.io/makecode-platformer-101/groupCourse
https://arcade.makecode.com/beta#tutorial:https://github.com/mickfuzz/mca_platformer_tutorial/fullTutorial
https://mca-platformer-examples.glitch.me/

2 Game Patterns

The key idea of this approach to game making is to start with a simple Platform Game Template

to Remix and to add Game Patterns from a menu of possibilities. There are many ways of

thinking about these patterns but in this guide we are dividing them up into the following:

Game Game

Mechanics Polish
Challenge

Systems

mechanics space polish and systems

« Game Mechanics: things to do with the actions of the game

« Game Space: things to do with the layout of the game
« Game Polish: music, backgrounds, graphics and story elements

« Challenge and Systems: how different elements interact to create challenge

2.1 How to build your own game from the following Game

Mechanics

The process of adding to the Platform Game Template to Remix. Start by playing the game and

then clicking Edit Code to get started. Then pick one of the Game Patterns below and follow the
instructions to add it to your game. Test it out and when you are happy with it, pick another and

keep adding to it. The following tips will help you:

« Some Patterns need to be added before other ones will work so look at the related Game

https://makecode.com/_FqWD64MxEiRi
https://makecode.com/_FqWD64MxEiRi

Patterns section to see if there are other patterns you need to add first

« Keep records of the links to your published games as you progress in case you get stuck
and need to go back one step

- Have a look at the activities of either the group course or an online individual course to
enhance your learning

« Adding these Game Patterns creates learning not only of Coding Concepts but also Wider

Computing Patterns and Systems Concepts

2.2 Game Mechanics

Add or change what you do in the game

- Add Player Lives

- Add Static Hazard

- Add an Animated Enemy

« Jump on Enemy to Zap them

- Double Jump

- Moving / Patrolling Enemies

« Moving / Following Enemies

2.3 Game Polish

Change the look and feel of the game and add to the story

- Add Graphical Effects

- Add Sound Effects

« Add a Sound Track (Music)

- Add a Game Story with Messages

- Animate your Player’s Movements

- Make Player Inmune

makePlayerImmune
animatePlayer.md
addMessages
soundTrack
soundEffects
simpleGraphicalEffects
movingEnemiesFollowing
movingEnemiesPatrolling
doubleJump
jumpOnEnemies
movingEnemiesAnimated
addHazard
addLives
learningDimensions#wider-patterns
learningDimensions#wider-patterns
learningDimensions#coding-concepts

2.4 Game Space

Change the shape or nature of the playing space of the game.

. Change Design of Levels

- Add More Levels

« Change Shape of Levels

« Change the Background Image

- Key and Door

2.5 Challenge and Systems

Through challenge and systems, games get harder as you progress to keep your interest.

- Gain Points when Collecting Food

- Add aTimer

« Collect all Food before Progressing

- Power up - Higher Jump

« Power up - Player Speed

- Random Doubling Enemies

10

randomDoublingEnemies
powerUpSpeed
powerUpJump
collectAllFood
addTimer
collectPoints
keyAndDoor
changeBackgroundImage
changeLevelShape
addLevels
changeLevelDesign

3 Learning Dimensions of this Project

This section includes a map of different learning dimensions which are possible and likely to

emerge from taking part in this game making course.

It is inspired by the work of Bevan and Petrich around their study of ‘tinkering’ in science
museums, who through close observation in partnership with learning facilitators mapped some
of the complex learning processes which may be hard to spot in a quite chaotic and messy

learning environment.

Other ideas behind the structure of this section are explored here.

« Coding Concepts

. Systems Patterns

- Design Practices

3.1 Coding Concepts

These concepts are needed to put Algorithmic Thinking into practice. The following are loosely

based on the computational thinking concepts of Brennan and Resnick.

+ Sequences

+ Variables
+ Logic

- Loops

« Arrays

« Creating Functions

- Change Listener

« Input Event

3.1.1 Sequences

- Description: Tasks that can be expressed as a series of steps.

11

http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
README.md#ideas-behind-this-course

Why is it needed : Computers don’t have common sense. They need precise instructions
that are broken down into individual steps. The order that tasks happen in is significant.

Some bugs are due to errors to commands being run in the wrong sequence.

How it happens in practice: You would put the sequence inside a on start block. An

example from our starting template is below.

on start

set mySprite ¥ to sprite of kind Player ¥
move mySprite * with buttons vx @ vy o @

set mySprite w ay (acceleration y) *+ to @

set mySprite * position to x e y

camera follow sprite mySprite ¥

set background color to .
set tilemap to .

call createlLevels

logic

A co

mmon practice when there is a set of instructions that might be run in more than one

situation, or to keep code neat is to create a separate function. The last block of the code above

does that.

3.1.

Examples in our Game Patterns: Add Player Lives,

2 Variables

Description: Variables are a kind of data that allow storing, retrieving, and updating

values.

12

addLives

« Why is it needed : Variables are useful when we know something may change when our
program is running. For example if we create more than one level, we can create a

variable called level and increase this each time a player progresses.

How it happens in practice: You can create and set variable us using blocks in the

Variable section.

Variables

Make a Variable...

set levels * to

change levels * by o

logic

- Examples in our Game Patterns: Add More Levels,

13

addLevels

3.1.3 Logic

- Description: Logic (Conditionals) give the ability to make decisions based on certain

conditions so that of multiple outcomes may occur.

« Why is it needed : Logic / Conditionals are a key concept in interactive media as it allows
for different things to happen based on different input choices from the user / player. Or

in games to respond to different conditions of play in the game.

- How it happens in practice: There are logic blocks in MakeCode which express different
pathways using the if / then / else logical pattern. Comparison blocks let you compare
the values of mathematical and text values and then run different blocks of code

depending on the result.

14

Logic

Londitionals

logic

« Examples in our Game Patterns: Animate your Player’s Movements

3.1.4 Loops
- Description: A loop is a way of repeating a piece of code so that it runs more than once.

« Why is it needed : We could programme an enemy to move 100 pixels to the right, wait
0.2 seconds, and then to repeat the action - moving another 10 steps, and waiting
another 0.2 seconds. What if, instead of a single repetition of the action, we want the
enemy to move and wait three more times? We could easily add more move and wait
blocks. But what if we wanted to repeat the process 100 or 1000 more times? Loops are

a way to run the same sequence many times.

- How it happens in practice: in Make Code we use green Loops blocks to repeat code. An

example is the “repeat x times” block.

loop one

- Examples in our Game Patterns: Add Static Enemies,

3.1.5 Arrays

- Description: Arrays are a kind of list which also allow you to store and retrieve values but

16

addStaticEnemy
animatePlayer.md

as a flexible collection of numbers or strings or images.

« Why is it needed : Arrays are commonly used in combination with loops, to loop through
a list of things to repeat a process. An example would be the way a tile map is turned into

a game layout.

- How it happens in practice: There is a group of code blocks in the advanced section of
the Arcade MakeCode interface which help us to work with Arrays. Also using tilemaps to

represent level layout is a kind of array.

Arrays

(reate

set list *+ +o | array of o o @ @
set text list + to | array of a o o @ {EE}

empty array EIE}
Read

length of array list =

list =+ get value at o

array

- Examples in our Game Patterns: Change Design of Levels

3.1.6 Creating Functions

- Description: Also known as abstraction and decompostion (by modularisation), this is a

17

changeLevelDesign

pattern that allows programmes to be broken down into smaller pieces, which do a

specialist job. In this case the pieces are called functions.

- Why is it needed : The concept is in line with a programming principle called DRY (Don’t
Repeat Yourself). It allows you to call the same piece of code from different parts of your

programme so you don't have to repeat them in more than one place.

« How it happens in practice: Examples include: - creating levels on start and when goal is

reached

- Examples in our Game Patterns: Add Levels

3.1.7 Events

Events occur at different times in the running of a computer programme. Two types are User

Input Events and Change Listeners.

Input Event

- Description: Also known as an event handler. Events - one thing causing another thing to
happen - are important to interactive media like games. For example, a button triggering

the start of play, or controlling game player’ s movements.

« Why is it needed : Working with User Input is a key part of most computer programming

design, it allows the user to interact with the programme to make things happen.

« How it happens in practice: Examples include:

o controlling the player movements on screen

o responding to button presses for jumping for firing etc

Change Listener

- Description: Also known as States, this pattern is useful when you want one part of your
programme to listen out for changes in the stage of another. An example would be

listening for an overlap between the player and an enemy. The programme can then take

18

addLevels

3.2

3.2.1

3.2.2

action when this overlap change happens or a particular condition is true.

Why is it needed : In many media programmes you need to change formatting or to

make something happen based on the conditions of other objects.

How it happens in practice: Examples include:

o listening for the player being in a condition of overlap with an Enemy

o changing the animation of a player based on if they are still, moving or jumping

Systems Patterns

Systems Elements

Systems Dynamics

Reinforcing Feedback Loops

Balancing Feedback Loops

Systems Elements

Description: This concepts allows you to break down a system into its different parts. In
our game we can break down the into game components, goal, space, rules and
mechanics. This helps to start to identify the different kinds of links between the system

elements.

Why is it needed : This process of recognising and naming the system elements is the

start of being able to understand how a system works.

How it happens in practice: Examples include:

o naming the components, rules, space, mechanics and goals of our starting platformer

o the process of making changes to these game elements

Systems Dynamics

Description: Links between systems elements can be static or dynamic. The idea of

stocks and flows is important. For example in a game you can have a static number of

19

3.2.3

3.2.4

hazards that never changes, or a dynamic population of enemies that may increase or

decrease. The nature of relationship between enemies and player will then be different.

Why is it needed : Recognising dynamic parts of game system allows you to make more
informed decisions about how it will change and react to changes. For example
understanding these dynamics are important when making a game to make sure the

level of challenge for the player is suitable.

How it happens in practice: Examples include:

o increasing the number of enemies to increase challenge

Reinforcing Feedback Loops

Description: Feedback loops can be balancing or reinforcing. We can thing of a
reinforcing loop as change that gets progressively either bigger or smaller. For example a
population of rabbits spiralling larger and larger in a place where they have no natural

predators and plenty of food.

Why is it needed : In a game you may want a reinforcing loop if you want to increase the
challenge for a game. For example, you may want the number of enemies to drastically
increase towards the end of a level.

How it happens in practice: Examples include:

o creating a hectic game with many spawning enemies

Balancing Feedback Loops

Description: Feedback loops can be balancing or reinforcing. Balancing feedback loops

tend to react to changes in a system with a responding change that brings balance back.

Why is it needed: In eco-systems balancing loops work to keep a system stable,
preventing there from being too many predators for example, as they will die off if there
isn’t enough food for them to prey on. In games balance is needed to maintain the right

level of challenge for the player.

20

« How it happens in practice: Examples include:

o gravity acting as a balancing force to jump velocity
o keeping a check on the number of enemies that the player has to face so that the

game doesn’t become impossible

3.3 Design Practices

3.3.1 Defining Design Practices

This mapping of design practices encompasses concepts from the following frameworks.

« Design Thinking Skills: This computational thinking definition of Brennan and Resnick

contains a section on design practices afforded by the Scratch media authoring tool. His
creative design spiral is similar.

« 21st Century Skills: There certain elements of key 21st Century Skills like communication,
collaboration, critical thinking and creativity that are key to design practices.

- Digital and web literacy: The web literacy project by Mozilla maps maps digital skills

suited to collaborative and digital game making, some element are included here.

The whole process is inspired by Bevan and all’s learning dimensions framework for making and

tinkering. The following learning dimensions have emerged having been selected based on

observation the practices being used in the game making programs:

« Goal Setting

- Being Incremental and Iterative

- Developing Shared Vocabulary

- Reusing and Remixing

- Web Navigation

« Problem Solving

« Version Control

« Debugging

- Reusing and Remixing

21

https://www.frontiersin.org/articles/10.3389/feduc.2020.00121/full
https://www.frontiersin.org/articles/10.3389/feduc.2020.00121/full
https://foundation.mozilla.org/en/initiatives/web-literacy/
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

3.3.2

3.3.3

3.34

Game Testing and Publishing

Goal Setting

Description: The process of remixing a game involves decisions to change the game
intentionally in minor or more fundamental ways. These moments of participant

initiative draw from and build on existing knowledge.

How it happens in practice: Example activities which demonstrate this include:

o Invitation to peers to set new goal or revise existing goals
o Participants expressing new goals to include in game or around the wider making
experience

o Clarification or questions about desired game design behaviour

Being Incremental and Iterative

Description: Designing a project is not a clean, sequential process of first identifying a
concept for a project, then developing a plan for the design, and then implementing the
design in code. It is an adaptive process, one in which the plan might change in response

to approaching a solution in small steps.

How it happens in practice: Examples include:

o Small revisions to address the game pattern being worked on or sub goals
o Changes which seeking to maintain or create game balance for suitable challenge
level

o Evaluating aesthetics of graphics / sound elements and revising further

Developing Shared Vocabulary

Description: The process of working on a joint project involves the development of
shared understanding of the problem being worked on. This may involve checking
working concepts by advancing them and questioning meaning of other’s expression.

Related activities also include

22

« How it happens in practice: Examples include:

o Asking or providing clarification of terms being used

o Requesting or offering help in solving problems using specialist terms

3.3.5 Collaborative Production

- Description: Where participants work together on game making as pairs or in family
groups participants often demonstrate behaviour which encourage collaboration and
participation in the broader community aspects of game making. The process of offering,
providing or requesting help with the non-technical aspects of advancing the project in
guestion. There are other aspects of support which are needed outside of the session
like access to resources or helping participants to access learning in a general sense. This

is often the role of parents but sometimes siblings or child participants step into this role.

- How it happens in practice: Example activities which demonstrate this include:

o

Redirection of other participant’s activity back to reflect their earlier goals
o Invitation to imagine the end game player’s experience

o Advancing or suggesting alterations to collaborative working practices

o Emotional support through general encouragement and keeping a sense of
perspective

o Brokering access to wider learning opportunities

3.3.6 Reusing and Remixing

- Description: Building on other people’s work has been a long-standing practice in
programming, and has only been amplified by network technologies that provide access
to a wide range of other people’s work to reuse and remix. This behaviour may be

remixing the work of others or through helping others to replicate their own work.

- How it happens in practice: Example activities which demonstrate this include:

o Direct copying of game features from other games by replicating code

o More indirect copying of features and ideas via observation or conversation with

23

peers

3.3.7 Web Navigation

- Description: The detail of moving from website to another, especially when keeping
several browser tabs open, offers the
chance to learn and share a variety of practices which make up key web-navigation

literacies. This is an area where young people often are able to help adults.

« How it happens in practice: Activities include:

o Asking or offering help in navigating between websites or browser tabs

o Parents or siblings as a repository for the logins and passwords of their children

3.3.8 Problem Solving

« Description: Problem solving and developing understanding develops some of the

aspects of collaborative work to working processes or domain knowledge.

« How it happens in practice: Example behaviour includes:

]

Giving explanation for outcomes or tactics

o}

Applying existing knowledge to the problem at hand
o Striving to understand project concepts

o Linking project experience to wider learning

3.3.9 Version Control

- Description: The process of keeping a track of different versions of your work is called
version control. There are many ways of doing it but doing it in a manually to keep track
of changes to our game is a great way to start to understand the value of this process.
The way MakeCode doesn’t support log ins encourages a process of saving versions of
your work frequently and saving them in a document, say an online google doc with

dates and descriptions.

24

How it happens in practice: Example behaviour showing this skill includes:

o Encouragement between participants to save work

o Keeping written records of changes

[e]

Deciding to create a new version of work

o]

Explaining and reminding peers of value of version control

3.3.10 Debugging

Description: Various testing and debugging practices are possible from learning to scan

block code for error messages, to using tools to watch variables.

How it happens in practice: Debugging involves different strategies for dealing with

different kinds of errors including:

o Glitches - code still works but unexpected result (questioning

o No errors blank screen, no idea (often retrace steps, go back to earlier version, or
have to start again)

o Clues, greyed out code, red dots, error messages (try to narrow down issue, remove

sections of code, again go back, try to find duplication of code blocks)

3.3.11 Game Testing and Publishing

Description: Game testing can be of one’s own game or as ‘playtesting’ of playing each
other’s game and giving and receiving feedback on game play. The process of making
work public or sharing a ‘finished’ version with the group can support development of

the evaluation.

How it happens in practice: Example activities which demonstrate this includes:

o Expression of pride, or fun when playing own game

o Imagining the user’s experience of playing their game

o Giving or receiving feedback either spontaneously or with support form a feedback /
playtesting sheet

o Creating a public link from a game making workspace

25

4 Methods

The resources here are part of a learning model which has the following elements:

« Game Making MISSIONS main missions involve choosing authentic game making design

patterns from a menu. Other side missions help with engagement of different making
preferences.

- A MAP of Learning Outcomes particularly suited to digital game making, presented in an

accessible format to teachers and learners.

- Design METHODS are techniques that facilitators and learners can use to help navigate

the process of making a game and reflecting on what is being learned in the process.

This page outlines methods and groups them by theme.

Methods Using Missions

« Macro Mission - Tell a Systems Story (environmental or social) through a game

« Discovering Game Mechanics
« Improving Half-Baked Game
« Limits to the Mission based approach - meeting your self in the middle

« Player and Maker types & Specialised missions

Methods Using the Learning Map / Design Process

« Circle / Physical Reflection Games:

+ Guidance on Running Creative Design Sessions: imagined audience,

Other Methods

« Using Hardware and Playtesting to focus on Imagined Audience

+ Predicting Code Outcomes via Games

26

methods
learningDimensions
missions

« Coding Concepts via step by step tutorials

« Supporting Debugging

4.2 Discovering Game Mechanics

Knowing what the main mechanics for games are and making sure that they feel fun and

responsive for our player is key to making a great game.

Game Mechanics are often represented as verbs. Examples include;

« Collecting
« Avoiding

« Chasing

+ Shooting

Walking / Running

The process of identifying the verbs of the game, also normally allows the participants to list the

main components of the game too. This can start to build a knowledge of systems dynamics.

4.2.1 Identify Game Mechanics in Existing Games

We will start to understand games by playing a few arcade games and starting to look at what

makes them tick. On entry participants play the following games (from MakeCode)

« Chicken Run

- Hot Air Ballon Game

+ Bunny Hop

- Eat the Fruit
« LlevelUp

Write down the main VERBs for these games. Some have more than one Mechanic.

Extending this activity: This activity can be extended to analyse games using more game

Components in line with game theory. A hand out is available here.

27

https://docs.google.com/presentation/d/1keXqKaWAzwRE7gwxTLoJ9RBzK3UUjkiO_mH7FsuxMqk/edit#slide=id.p2
https://makecode.com/_aMDL6JL9ELD6
https://makecode.com/_1Mvaf0TXPTdu
https://makecode.com/_cj4WmuaT37sP
https://makecode.com/_h7zCkiX4wgL0
https://makecode.com/_3jbT4hLeP9tH

4.3 Improving Half Baked Games

This process is a way to jump right into altering code. Instead of planning from first principles,
learners are given a game that is designed to provoke players to tweak it. This process is inspired

by game modding and a process called using half-baked games is often called

4.3.1 Example Activity - Fix the Broken Game

Now we will start coding by jumping right in. Try to play this game. It's broken right? You can'’t
jump high enough. Now look at the code of this broken game and use the link to workshop cards

with activities to fix the game and add some elements quickly.

. Broken Platform Game to Fix

« Supporting Activity Cards

At the end of the session make sure to Publish a copy of your game and to give it your own

name. Keep a record of the link to your game. We'll come back to it next week.

4.4 Circle / Physical / Drama / Reflection Games

From stables of drama and community process. They are to introduce concepts in a playful way,
and to help reflection - often this works just to draw participants away from their screens to

interactive in a different way.

4.4.1 Example Activity - Reflection Web Activity to End a Session

Play a quick reflection game to find out what people thought and got out of the first session. The

Reflection Web is a fun one to start with. Ask the following questions.

« Share something you found fun
« Share something you found hard

« Share something that surprised you

28

https://pblactivities.wordpress.com/2018/09/03/reflection-web/
https://docs.google.com/presentation/d/1vgHFm4zSC3YEVAXJORSoDHBFYSBIHK2mSCNfgbpiaHY/edit?usp=sharing
https://makecode.com/_2iLfej4d6Rfa
https://makecode.com/_2iLfej4d6Rfa
https://discovery.ucl.ac.uk/id/eprint/10079330/8/Giannoutsou_Children%20challenging%20the%20design%20of%20half-baked%20games.%20Expressing%20values%20through%20the%20process%20of%20game%20modding_AAM.pdf

4.4.2 Line Up Reflection Activity

Paper Slide: On paper, individuals or groups sketch and write what they learned or have been
working on this session. Then line up and, one at a time, slide their work under a video camera

while quickly summarizing what was learned. The camera doesn’t stop recording until each

representative has completed his or her summary.

For this reflection activity ask participants to include any new objectives or work on systems

dynamics.

4.4.3 Example Activity - A Game and Tips to Keep track of our Progress and our

Games

Play musical chairs. When someone is left standing up. Ask themselves

« what new idea or coding technique jumped out for you today?

- what do you want to do next?
Then share the following tips for participants to make the most of this course:

« Working on your games at home is a great way to make the most of this course - check
that you have all you need to be able to access your game later

« Be careful in keeping track of the location of different versions of your games, include a
version number, describe what changed, even include a bit about what you are learned
since the last version

- If this works well then why not keep a separate learning journal to reflect on what you

are learning?

4.4.4 Example Activity - Bomb and Shield

Play a game to understand the elements of a game. There is a game called bomb and shield

which you can play with a small group in the following way.

- Mark out your game space, no-one can walk or run outside of that.

« Everyone choose one person but don’t say who it is. This person i your bomb

29

https://www.youtube.com/watch?v=vxF4P8vx3o8

« Choose another person but don't say who it is. This person i your shield
« Everyone walk around the space but try to keep your shield between you and tyour

bomb.

Say Freeze. Stop the game and see who is safe. Play again, get them to swap people or choose

new people.

Exploring the Elements of a Game

Outline the different elements of a game which can be changed by the designer to change the

nature of the game.

« Components - the nouns of the game for example for a platformer (player, collectable
food, enemies, end goal sprite,)

« Mechanics - the verbs of the game (walking, jumping, collecting)

« Space - changes to the layout of the game (location of platforms, does the space scroll
when you move)

« Rules - what are you allowed to do, not allowed to do, what must you do (e.g. you must

collect all food before progressing a level)

« Goal - what is the main goal of the player of your game (e.g. collecting points or progress

to levels by reaching an end goal?)

Have these written out and ask participants to try to match them with the following elements

from our game.

Bomb, Shield, Player

« Aclear space outside or in which is about the size of a room

« You are not allowed to push people out the way.

« Win the game by staying safe by having your shield protect you from your bomb

- Walking

Explain that digital games can be analysed in the same way and that we will learn to use this

knowledge to make a challenging game.

30

4.4.5 Fun Project Evaluation and Reflection

You may want to use this as an opportunity to gather feedback from participants on the course
to make improvements and to encourage final reflections from course members on what they

gained from the game making activities. The following questions may be useful.

FUN THIS UP?

« How has your learning journey been?

« What is the most noticeable change along the way?

« Can you share about your changes in confidence in use of the specifics of coding
concepts?

« What do you feel you've learned about wider patterns - computer programming/
systems designs?

« What are your final takeaways?

4.5 Drawing on Home and Game Cultures

This method is inspired by third space theory and the importance of being able to work with
Home Discourses.
4.5.1 Using Hardware Device to Increase Motivation

There are different hardware available for making a splash with the finished games. Using

hardware with buttons can also increase the playability of the games as well.
These include:

Hand-held Devices: A number of game-boy like devices exist which are great to use with old

school buttons and mini screens. See a list here.

31

https://arcade.makecode.com/hardware

BrainPad Arcade Meowbit Adafruit PyBadge

Learn how BrainPad Arcade lets A retro game console for STEM It's a badge, it's an arcade, it's a
you run games on a small handheld education from Kittenbot team. PyBadge.
console.

Adafruit PyGamer Kitronik ARCADE Ovobot Xtron
The upgraded PyBadge. ARCADE is a programmable A programmable microcomputer
gamepad for use with MakeCode that can be used for making
Arcade. MakeCode Arcade games.
boxes

Arcade Cabinets: A bit of carpentry can create a fun looking arcade cabinet, we have some great

ones where we pop in old laptops and use arcade buttons and makey makey'’s to create great

looking machines.

boxes

Cardboard Cabinets: Even more fun perhaps is to make your own arcade cabinet machine out of

cardboard and hook up your buttons and makey makey’s to that. More info here

32

https://arcade.makecode.com/hardware/raspberry-pi/cardboard-control-panel
https://arcade.makecode.com/hardware/makey-makey
https://arcade.makecode.com/hardware/makey-makey

boxes

You may want to run an extra session on making a console with computer electronics including

hardware elements of arcade buttons. There are links to resources to help you here.

If your project involves cardboard elements then it can be a great idea for participants to take

the cardboard home and to decorate it with ideas from their game.

4.5.2 Showcasing to and External / Authentic Audience

If you do have a chance it can be a really exciting experience to showcase your games at an
event or in a public place where you can get passing strangers to play your games. For our
courses at the Manchester Met University we have a captive audience of undergraduate

students.

| have found that this is often where parents come into their element. Ask parents to be
cproactive to draw in passing people to play and give feedback on games. It is very satisfying to
witness strangers play your game and experience the kind of fun frustration and desire to try

again to beat a particular part of your level design.

If this is not possible then try to make the final playing of each other’s games a real event. The

use of the hardware and especially decoration of cardboard cabinets can really help to create

33

https://arcade.makecode.com/hardware

a sense of an event. Also ask participants what they want to do to celebrate, share food, play

music as a shared play list for example.

You may want to have in place a form which allows participants to gather player reactions. This

can be via a written form or a quick recorded interview if suitable.

4.5.3 Exploring - What kind of Game Player / Maker are You?

As digital and online games became more complicated Richard Bartle proposed that different
people play these games in different ways and look to get different things out of them. In short
there are different kinds of players. The Bartle test finds out what kind of game player you are.

Do the online Bartle Player test. You may be able to find a way of doing it as a group by moving

around the room.

This is also true of the way that people play games. There’s a well known model of different play
style types by Richard Bartle. This model, which was based on observing and analysing the
behaviours people playing together in a multi-user game, holds that there are four different
kinds of play style interests, each of which is given a descriptive name: Griefers, Achievers,

Explorers, and Socializers.

Griefers: interfere with the functioning of the game world or the play experience of other

players

« Achievers: accumulate status tokens by beating the rules-based challenges of the game
world

« Explorers: discover the systems governing the operation of the game world

« Socializers: form relationships with other players by telling stories within the game world

Different kinds of games suit different play styles. One of the notable successes of recent years
have been open world games that allow you to choose how you play the game. If you want to
stick to the main missions you can follow guidance to do that but if you just want to explore or

be social or mess around you have the chance to to do that too.

In the same way there are different styles of making games. I'm proposing the following;

34

http://matthewbarr.co.uk/bartle/

- Social makers: form relationships with other game makers and players by finding out
more about their work and telling stories in their game

« Planners: like to study to get a full knowledge of the tools and what is possible before
they build up their game step-by-step

- Magpie makers: like trying out lots of different things and happy to borrow code, images
and sound from anywhere for quick results

« Glitchers: mess around with the code trying to see if they can break it interesting ways

and cause a bit of havoc

As well as different game player types, there are also different game maker types. These are
listed here, but if you are a planner then you may want to really know how all of the code for our

game works before you start to make other changes to it.

4.5.4 Step by Step Tutorials - (suits Planners especially)

If you are a planner then you may want to take the time to work your way through these

tutorials. If not jump right on to the next section.

- Tutorial Part One

. Tutorial Part Two

4.5.5 Adding Game Patterns to a Starting Template (suits Magpies especially)

In part one we made changes by adding features called Game Patterns to a broken game. We are

now going to start from with a similar Platform Game Template to Remix. It is a bit simpler, for

example there is only one level and you don’t have to collect all food before winning. There are
many ways of thinking about these patterns but in this guide we are dividing them up into the

following:

35

https://makecode.com/_FqWD64MxEiRi
gamePatterns
https://arcade.makecode.com/beta#tutorial:https://github.com/mickfuzz/mca_platformer_tutorial/tutorialPartTwo
https://arcade.makecode.com/beta#tutorial:https://github.com/mickfuzz/mca_platformer_tutorial/tutorialPartOne

Game

Mechanics
Challenge

Systems

mechanics space polish and systems

« Game Mechanics: things to do with the actions of the game
« Game Space: things to do with the layout of the game
« Game Polish: music, backgrounds, graphics and story elements

« Challenge and Systems: how different elements interact to create challenge

Find a fuller list of the different Game Patterns and how to apply them on this Page.

4.5.6 Extra Missions (suits Socializers and Griefers especially)

Extra Mission Cards These extra missions encourage us to think of our games as dynamic
systems that change as we play the game.

Mission Cards for this Sessions

You can point them towards elements of systems thinking that arise from these challenges.

These may include the following.

Systems Elements

Systems Dynamics

« Balancing Feedback Loops

- Reinforcing Feedback Loops

36

learningDimensions#reinforcing-feedback-loops
learningDimensions#balancing-feedback-loops
learningDimensions#systems-dynamics
learningDimensions#systems-elements
https://docs.google.com/document/d/1tKr8kWzoI6Hdn1zHPHmDP7hd4C_G12PSkwUP-Zsw69s/edit
gamePatterns

4.6 Predicting Code Outcomes via a Matching Game

4.6.1 Matching Games to Code Game

On entry participants play the following games (from MakeCode)

Galaga
Duck Run
Eat Fruit

Level Up
The next activity is to try to match cut out screen grabs to each of the games. [See print outs
here] (https://drive.google.com/drive/u/0/folders/INEh-YHINO_yr7IBx1tVySml-ZkvDtpbp).
Additionally as a bonus can you see any of the following:

Variables
Loops
Logic

Events

4.7 Guidance on Running Creative Design Sessions

4.7.1 Creative Design Game Making Session Summary

Follow the Creative Design Game Making Session pattern as outlined in week two.

Set goals to add chosen game patterns

Follow the coding help to make the changes you need

Test the game yourself imagining the end player’s experi#### ence
Play test other people’s game and get feedback for yours

Reflect on our progress

37

4.7.2 Creative Design Checklist

Follow the Creative Design Game Making Session pattern as outlined in week two - Set goals,

follow the coding help, self-test the game yourself, play-testing, reflection on our progress
In terms of goal setting. What is becoming special about your game. What are the final changes
you want to make? Use the following check list to make quick changes to your game.

« Do you have a strong story for your game? Can you add one?
« Have you applied a Mission Card or a system pattern yet?

« Have you got a balanced of game patterns added?

Also pay special attention to the play testing phase this time to see if you can see any glitches
that others may find in your game.
4.7.3 More Detail on Creative Design Game Making Sessions

Locate Academically. The sessions are informal and different participants will be doing different
things at different times. However there is a general pattern to help organise the chaos of our

game making sessions. The sessions are based around the following pattern.

Set Goals Have a look at the list of the different Game Patterns. Each Game Pattern has it’s own

page. with descriptions of the patterns and details of how to add it to your platform game. For
now choose 2 patterns to add to your game. Choose at least one that you think will be quick to
implement. We will add them to our game before the end of the session. Fill out the Goal Setting

sheet. (Create this sheet)

Create See the sheet and the pages to help you make the changes. These are normally step by
step instructions. Sometimes there are places where you make your own decisions. Think about

story of the game and the characters involved.

As we make changes to our game we will learn about the specific coding concepts needed to do
computer programming, ideas like loops and logic. We'll also find links to wider patterns of
computer programming and systems ideas that are important in the world of Human Computer

Interaction and Systems Thinking. Have a look at a list of the learning dimensions we might pick

38

learningDimension
gamePatterns

up through our game making.

Test You should play your game after every change you make to see how it has changed the
playing experience. Keep in mind the experience of the end player when you are testing your

game. Also try to think about the right level of challenge for your game.

Share with Playtesting Playtesting is a great way to really understand how the changes to your
game make an impact on how the player experiences it. If you are doing Playtesting as a group
then be sure to test a couple of games and make sure at least a couple of people test your game.

Use this linked feedback sheet to help give feedback on games. << ADD SHEET

Publish Be sure to publish your work using the share link in the top right of the MakeCode edit
screen. Give your game a name and ideally a version name. A good name communicates what'’s
fun about your game or its story to your audience. You can also use the MakeCode forum as a

way of getting feedback this. To do this click on the image of the speech bubbles.
Share Project

Your project is ready! Use the address below to share your projects

https://makecode.com/_PekC4BhAdIRM Copy 74|

= 5
—

> Embed

!E I
S (x)

mechanics space polish and systems

Reflect Reflecting on our progress allows us to getting the most out of the making to deepen our

learning and make links to other areas of making.

There are different ways to do this, and if you are in a group you may want to make this into

some kind of fun activity. There are some nice closure ideas here

4.7.4 Revising your Design Goals in the Final Stages

When you are making a game it is common to not have the time to make all the changes you

want to make.

39

https://www.edutopia.org/blog/22-powerful-closure-activities-todd-finley

If you are nearing the end of the time you have allocated. You now have to make the difficult

decisions to decide on the last big changes you will make to your game.

You also need to decide on which goals you will not be able to add to this game. To do this you
can make a list and choose only the top two or three to work on. Try to use your experience
from previous sessions to estimate how long this will take you. Try not to much more to your
game in terms of new patterns. Focus as much as you can on the playability of your game. Make

sure to allow time for a lot of self testing.

4.8 Supporting Debugging

4.8.1 Describe and Post a problem to your peers or the MakeCode forum

If you get stuck trying to add one element to your game then share a link of the broken game

with your facilitator or the friendly online MakeCode community.

Also if you get stuck on one problem don'’t let that stop you. Go back to your last working
version and try to add a different game pattern. That way when you solve your original problem

you can add in the changes to your new version.

4.8.2 Understanding types of errors and dealing with them

Can this be made into a game of some kind ? There are different kinds of that you may come up

against. Knowing how to deal with them is a good tactic to keep us progressing.

« Syntax and Program Errors are errors in your code which stop the game from functioning
at all.

« No Behaviour Bugs are errors which in your code which don’t stop the game from
functioning but your intended effect is not present when it should be.

« Glitches don'’t stop your game from running but as you play you see that there is an

unintended effect the game does something different from what we want it to do.

Recognising and Fixing Program Errors and Syntax Errors

40

https://forum.makecode.com/c/Share-your-Arcade-projects-here/5

Syntax Errors are mistakes in the code we write, there are a lot of things MakeCode does to
make it harder for us to make these kinds of syntax errors. However they can arise when we put

the wrong kind of block in a particular location.

You may get a Program Error on the screen and a Black screen in the preview window.

{} A Home <5

4 Sprites

set mySprite ® position to x e 'l 108

@ C(ontroller

camera follow sprite mySprite
@ came i

set background color to .
@) Music .

set tilemap to .
‘ Scene I

call createlevels
B Info -
C' Loops set mySprite® to sprite @ of kind
3 Logic : .

move mySprite® with buttons wx vy
= Variables |

set mySprite = ay (acceleration y)* to
f Math

Program Error: sim error: failed cast on null

-‘n Download [11] Error with Gravity Du

debugging

The problem may be to do with the order of your code. The code in the screenshot here tries to
move a sprite to a location but before it has even been created. If you get one of these code try

reading through your code to see if it is the right order.

A similar type of error is a Syntax Error. When there is a syntax error in MakeCode Arcade your

game will not run and may just show a grey version of your game in the preview window.

41

debugging

When this happens have a look for the ! sign in a hazard triangle somewhere in your code. This is

where the problem is.

ililanl (@ createlevels

for element value 'of array of all .v locations

do -
(!N set foodlw to sprite mySpritew of kind Food v

place foodl+* on top of valuew

set ﬂv at valuew

debugging

Click on the triangle and you will get more details of what the error is about.

42

iiilawlell createlevels

Argument of type "Sprite’ is not assignable to parameter of type "Image’.
QY€ property "drawIcon’ is missing in type 'Sprite’.

e e <) == 5 A
do

A

(=) set foodlw +to(sprite mySpritew of kind Foodw

place foodlv on top of valuew

set .v at valuew

debugging

This may not make a lot of sense to you. But often it is due to putting the wrong kind of block in
the gap. In this case there should be an Image block in this gap. The code error message can help
us debug our code as even if we don’t fully understand it, at least we know where the problem
is. We can try out different blocks in this space to solve the problems. Also you can use the undo
button at the bottom of the screen to go back in stages to a situation where the code was
working. If you have made a few changes keep pressing that buttons until the game preview is in

colour again.

Finding and Fixing Glitches and No Behaviour Bugs

This is not universally accepted as a difference but for the purposes of this course bugs and

glitches are different.

« Bugs are mistakes in the code where the intended effect doesn’t happen so you can’t
achieve what you want
« Glitches are mistakes where unintended effects do happen that are different from what

you wanted

Bugs and Glitches often show up when we are testing our game. Sometimes they show
themselves quickly when we are self-testing, sometimes it takes other people playing the game

to find glitches that’s why play testing is so important.

While bugs are often just frustrating, we can sometimes celebrate glitches. They can be fun and

are normally a good way for us to understand more about what is happening on a code level.

43

One technique you can use to try to solve glitches or bugs is through debugging with a technique
called watching variables. To do this click on the image of the bug under the game preview

window.

This brings up a new window and also changes how the blocks look on the block building part of
our screen. It puts little squares next to them. These allow us to set code break points. A break
point is a way of stopping the running of the game code at a certain point. In our case let’s use

an example were we do that to check the value of a variable we have created.

Imagine we want to increase the gravity every two seconds as the game progresses. Just a little,
so the game gets harder as time goes on. The desired behaviour is to change the gravity so it

increases by 10 each 2 seconds. To do this the following blocks are tried.

on game update every PECREIE N ms

set mySprite - ay (acceleration y)* to e

debugging

The desired behaviour doesn’t happen. The player gets lighter not heavier. You may see the

mistake right away but imagine you don't.

Turn on debugging by clicking on the image of the bug under your preview screen.

44

debugging

We are going to set break points in our code to see what is happening. Do this by clicking in the

circle next to the code we are interested in. In this case in our game update loop.

45

2> Step b O

Variables

this: (function)

» goal: Sprite
» foodl: Sprite
- mySprite: Sprite —— -
X 10 B octios ysorite 3y (acceleration) - to ()
v 104
. 0 of kind
vy: 0.19531... NN
ax: 4
ay: 10
id: 0

rray of all » locations

— ~

debugging

Now click on the green Play button to start running the code. It will stop when it gets to the
break point. We can now see what the value of the variable we are interested in is at this point.
In this case click on the arrow next to mySprite to see what the ay (gravity) variable is. We can

see that instead of increasing by 10 each 2 seconds it is being set directly to 10 instead.

2 Step O

Variables

this: (function)

v goal: Sprite
» foodl: Sprite
. mySprIte Sprlte on game update every ms
X 10 O change mySprite = ay (acceleration y)= by a
y: 104
vxX: 0 of kind Foodw
vy: 0
ax: 0

ay: 360
id: 0

debugging

Now we know this is the cause of the error we can change the block to change mySprite ay by
10 instead. If we repeat
the debugging then we’ll see the value go up in steps of 10 each time we click on the green play

arrow to step through the code.

46

When you are self-testing or play testing games and find mistakes find out the following:

What type of error are you encoutering - Errors, Bugs or Glitches?

- If they are black or grey screen errors can you find any messages?

« If they are bugs glitches what is the different between the intended behaviour or effect
and the actual behaviour?

« What tactics are there to solve the errors, bugs or glitches?

47

5 Missions

The resources here are part of a learning model which has the following elements:

Game Making MISSIONS main missions involve choosing authentic game making design

patterns from a menu. Other side missions help with engagement of different making
preferences.

A MAP of Learning Outcomes particularly suited to digital game making, presented in an

accessible format to teachers and learners.

Design METHODS are techniques that facilitators and learners can use to help navigate

the process of making a game and reflecting on what is being learned in the process.

This page outlines different kinds of missions that are used in this game making approach. It

needs to be rewritten to make it concise and with nods to existing, similar approaches.

Methods Using Missions

5.2

Macro Mission - Tell a Systems Story (environmental or social) through a game

Improving Half-Baked Game
Player and Maker types & Specialised missions

Limits to the Mission based approach - meeting your self in the middle

Using Game Design Patterns as Missions

One of the driving ideas of this approach is to choose game making design patterns from a menu

5.3

Main Macro Mission

The starting hook for our mission is to make a game which tells an environmental or social story.

This approach is sometimes called Games for Change. The game doesn’t need to be too serious

48

gamePatterns
methods
learningDimensions
gamePatterns
gamePatterns
missions

and of course it can be a lot of fun. Having a bit of a guide for what kind of game to create can

be helpful if learners are unsure of where to get started.

5.4 Navigating with Game Design Patterns

The key idea of this approach to game making is to start with a simple Platform Game Template

to Remix and to add Game Patterns from a menu of possibilities.

Game

Mechanics
Challenge

Systems

mechanics space polish and systems

5.4.1 Improving Half Baked Games

This process is a way to jump right into altering code. Instead of planning from first principles,
learners are given a game that is designed to provoke players to tweak it. This process is inspired

by game modding and a process called using half-baked games .

We start coding by jumping right in. Try to play this game. It’s broken right? You can’t jump high
enough. Now look at the code of this broken game and use the link to workshop cards with

activities to fix the game and add some elements quickly.

- Broken Platform Game to Fix

- Supporting Activity Cards

49

https://docs.google.com/presentation/d/1vgHFm4zSC3YEVAXJORSoDHBFYSBIHK2mSCNfgbpiaHY/edit?usp=sharing
https://makecode.com/_2iLfej4d6Rfa
https://makecode.com/_2iLfej4d6Rfa
https://discovery.ucl.ac.uk/id/eprint/10079330/8/Giannoutsou_Children%20challenging%20the%20design%20of%20half-baked%20games.%20Expressing%20values%20through%20the%20process%20of%20game%20modding_AAM.pdf
gamePatterns
https://makecode.com/_FqWD64MxEiRi
https://makecode.com/_FqWD64MxEiRi

5.4.2 Extra Missions (suits Socializers and Griefers especially)

Extra Mission Cards These extra missions encourage us to think of our games as dynamic
systems that change as we play the game.

Mission Cards for this Sessions

You can point them towards elements of systems thinking that arise from these challenges.

These may include the following.

Systems Elements

Systems Dynamics

- Balancing Feedback Loops

Reinforcing Feedback Loops

Social Mission Cards Public Missions

Secret Mission Cards Secret Missions

50

https://docs.google.com/document/d/1K_EIO1CpWXnXiyqOI2LXcgFIpuWx5nnw/edit
https://docs.google.com/document/d/1McML_A-MO1Hnwo5qiVVlh5Fv3rYsdsDe/edit
learningDimensions#reinforcing-feedback-loops
learningDimensions#balancing-feedback-loops
learningDimensions#systems-dynamics
learningDimensions#systems-elements
https://docs.google.com/document/d/1tKr8kWzoI6Hdn1zHPHmDP7hd4C_G12PSkwUP-Zsw69s/edit

6 Add a Static Enemy

Game Mechanics:
Add a Static Enemies

mechanics add a static enemy

Name: Add a Static Enemy

Description: Also known as a Hazard, a Static Enemy will kill or damage the health of the
player if they touch it. These are often placed in tricky spots which the player is likely to

bump into when jumping or trying to collect rewards.

Need for Pattern: Having hazards increases the challenge of a level, you can place
hazards in a way that requires the player to time their jumps well and really control their

movement.

Related Game Patterns: Add Moving Enemies [related], Jump on Enemies [related]

Coding Concepts involved: Loops, Events

Links to other Computing Patterns: , Change Listener, Input Event

51

learningDimensions#input-event
learningDimensions#change-listener
learningDimensions#events
learningDimensions#loops

6.1 How to implement this Pattern in MakeCode

6.1.1 Add Static Enemies to your Tilemap

Click on your tilemap. Create a totally Red tile in My Tiles. Add one or two red blocks to your first

level.

Static Enemy Block

You can also draw an enemy / hazard of your choice in My Tiles section. Click on the plus sign to

do that.

6.1.2 Create a Collision Listener

We now code what happens when our player overlaps with our staticEnemy. Drag in an on
sprite of kind player overlap with __ at location from Scene. Inside the block drag in from Game

block of game over and keep it set to Lose.

on sprite of kind Player *+ overlaps * at location

game over < LOSE @

Static Enemy Block

52

6.2 Test your game and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. In this case check that each time you add in a red block in your level tilemap/s it
should behave as a static hazard. When you touch the enemy the game ends with a Game Over

message.
To check that you are making the most of this pattern you can ask yourself the following
guestions:

« Do you have any enemies in places that make it tricky for your player when they jump.

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

As a next step you may find you want to increase the challenge even more perhaps by adding
moving enemies. Or you may find that you want to balance out the increase of challenge that

these hazards have brought and add player lives.

53

gamePatterns.md

7 Add Player Lives

Game Mechanics:
Adding Extra Lives

mechanics space polish and systems

Name: Add Player Lives

- Description: The player starts the game with a number of the lives When the Player is

zapped, or runs out of health the play restarts but with one less life.

« Need for Pattern: Having player lives is a way of reducing the frustration of a challenging
game. For example players normally restart from the level they got lost their life on

rather than going back to the very beginning.

- Related Game Patterns: Before adding this pattern you'll need something that can zap

you. So add a pattern like add Static Enemy or a moving enemy.

« Coding Concepts involved: Variables

« Links to other Computing Patterns: Systems Dynamics,Change Listener

7.1.1 Adding a starting amount of lives

We can add in the starting number of lives. To do this drag in from Info a set lives to 3 block to

54

learningDimensions#change-listener
learningDimensions#systems-dynamics
learningDimensions#variables
addStaticEnemy

the beginning of the on start loop.

on start

set life to °
set mySprite* +to sprite @ [o]

set life to o
change life by o

move mySprite* with buttons wvx QR

set mySprite = ay (acceleration y) »

mechanics space polish and systems

7.1.2 Change the overlap loop for our Enemy

In this game previously you may have had code where the player overlapping with a Static

Enemy would be Game Over with the player losing.

on sprite of kind Player *+ overlaps * at location

change life by o

lose a point

Another possibility is that you may have moving enemies with a different code structure. You

can change to replace the Game Over lose block with a change lives by -1 block.

on sprite of kind Player* overlaps otherSprite of kind Enemy

change life by o

lose a point

55

7.2 Reflecting on what’s happening

Variables: In this example you are using a Variable of called life to keep track of the player lives.
In this example you start with three and you update the value of that Variable everytime you

bump into an enemy.

Change Listener: The on sprite kind overlap block is always listening out for a change where if

there is a new overlap with an enemy the programme will run the code inside that block. This

kind of Change Listener is often used in computer programmes to react to new situations.

Systems Dynamics: The use of new lives means that the balance of the game will be altered.

This may make it easier so you may need to balance this out by making something in your game

harder. This process of balancing out systems elements allow us to explore Systems Dynamics.

7.3 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. For example check that each time you touch an enemy your number of lives goes

down by one.

There is a known side effect with some kinds of enemies where you lose more than one life. To

avoid this you may need to make Player Immune pattern

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

56

gamePatterns.md
makePlayerImmune
learningDimensions#systems-dynamics
learningDimensions#systems-dynamics
learningDimensions#change-listener
learningDimensions#change-listener
learningDimensions#variables
learningDimensions#variables
learningDimensions#variables

8 Add a timer

Game Mechanics:
Adding a Timer

mechanics space polish and systems

Name: Add a Timer

Description: The player is required to complete the level or another goal before the

timer runs out.

Need for Pattern: Having a timer is a way of creating challenge for the player. If you have
more than one level you can reduce the time allowed for the next level to increase the

challenge as the game progresses.

Related Game Patterns: Add Player Lives [related], Add More Levels [related],

Coding Concepts involved: Data

Links to other Computing Patterns: Systems Dynamics, Making Functions

57

learningDimensions#systems-dynamics
learningDimensions#systems-dynamics
codingConcepts#data
addLevels
addLives

8.1 How to implement this Pattern in MakeCode

8.1.1 Simple Timer for each level
Drag in from the Info section a block that reads countdown into the createlLevels function.

Because this is in the createlvels function rather than in the on start function, this timer will

reset everytime you reach a new level.

start countdown @ (s)

for element walue of array of all .v locations

add timer
8.1.2 Have different timer values for each level

One classic way of adding challenge to a game is to ask your player to solve the next level of your
game in less time. If you want to have different values for your timer for each level. We will

create an array variable which will contain a list of the different times.

From Advanced > Arrays drag in a set list to array of block to the end of the on start block above

the call createLevels block.

58

Q, Search
Sprites

4 set list+* to | array of o o '@ @
Controller
. Gare set text listw to Qarray of o 0 0 @ @
@ Music

length of array | listw»
‘ Scene
m Info list » | get value at o
C' Loops
m Logic set sprite list+ to array of sprites of kind Player =
= Variables

list* | set value at o to

B Math
A Advanced list »+ [add value
fal Images

get and remove last value from 1listw
fw Functions

Then change the variable list to one called levelTimes by clicking on it and selecting New

Variable. Then change the times for each level. I'm setting the first level time to be 20 and the

next one to be 15.

If you haven't already drag in from the Info section a block that reads countdown into the

createlLevels function for each level. Next from Advanced > Arrays drag in a list get value at

59

block and add it to the countdown block, and include your

levelTimes value at level, as you can see in the screenshot below.

if level = =w o then

start countdown | list* | get value at level =

set tilemap to .

®

level = =w o then

start countdown | listw= get wvalue at level w

set tilemap to .

8.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. To check that you are making the most of this pattern you can ask yourself the

following question/s:
« Make sure you haven’t made your game too hard or too easy get others to test it

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

Some next steps you might want to add may be add more Levels. If you do that then you will

need to look at the pattern to add different timings for different levels.

60

gamePatterns.md

9 Double Jump

Q

&

Game Mechanics:
Double Jumping

mechanics space polish and systems
Name: Double Jump

Description: The player is able to jump in the middle of another jump but only once.

Pressing the jump button a third time with have no effect.

Need for Pattern: Having a double jump is a way of allowing the player to access areas
not possible with a single jump. Double Jumps also require good timing from the player

too so this can increase challenge depending on the design of your game.

Related Game Patterns: Jumping on Enemies [related]

Coding Concepts involved: Data, Change Listener

Links to other Computing Patterns: Systems Dynamics,

61

widerPatterns#systems-dynamics
widerPatterns#change-listener
codingConcepts#data

9.1 How to implement this Pattern in MakeCode

9.1.1 Create a “canDouble Jump” variable

We need to create a variable called canDoubleJump. Now add a block at the start of our game

and set it to true to start with.

on start

set canDoubleJump ¥ to true ¥

Double Jump 2

9.1.2 Create a Logic block to test if player can jump or not

Then you need to use blue logic blocks to check to only jump if

« the bottom of your player (mySprite) is touching the floor (wall) or

« orif (else if) canDoubleJump is true

on A ¥ button pressed w
if is mySprite * hitting wall bottom then

set mySprite w» vy (velocity y) * to

else if canDoubleldump * then

set mySprite = vy (velocity y) * to

set canDoubledump * +to false *

®

Double Jump 3

62

Once the player has used up their double jump ability, you set the canDoubleJump variable to
false. This stops the player from being able to jump more than twice.
9.1.3 Reset canDoubleJump variable

Then we must create to code to reset the canDoubleJump variable when you touch the ground
again. To do this create a on game update loop and put a logic block in there which will turn

canDoubleJump true when you are touching the ground again.

on game update

if is mySprite * hitting wall bottom + then

set canDoublelump * to true =

C)

Double Jump 1

9.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and no side effects. To

check that you are making the most of this pattern you can ask yourself the following questions:
« Now you have a double jump should you reduce the normal jump height (via changing
the jump velocity or gravity effecting the player)
« Are there any parts of your game that you can only access via a double jump

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

63

gamePatterns.md

10 Jumping on Enemies to Zap them

Game Mechanics:
Jumping on Enemies

Jumping on Enemies to Zap them

Name: Jumping on Enemies to Zap them

Description: In many games players shoot enemies. In some platformers they get rid of
them by jumping on them instead. If the player is descending from a jump when they

touch the enemy the player is zapped and in this case disappears.

Need for Pattern: Being able to jump on an enemy is a good way of clearing the area you
want to explore. You may need to have a clear space to be able to jump up to a high
platform for example. Some platformers do have a shooting mechanic as well but using

this pattern and sticking with jumping also keeps the game simple (in a good way).

Coding Concepts involved: Data, Change Listener

Links to other Computing Patterns: Systems Dynamics,

Related Game Patterns: You'll need to have added the Add Enemies pattern to your

game before you can add this one.

64

widerPatterns#systems-dynamics
widerPatterns#change-listener
codingConcepts#data

10.1 How to implement this Pattern in MakeCode

10.1.1 Add a Condition for the Overlap Listener block

We want the enemy to zap the player if they overlap normally or if the player is jumping up. But

we want the player to zap the enemy if they are travelling on the down part of their jump.

To do this we will check the Player’s x axis velocity. As the numbers are measured from the top
of the screen going down, if it is greater than 0 then the player is travelling in the down

direction.

Check if that’s true using the code blocks below, and if that isn’t the case then set the game to

game over.

on sprite of kind Player overlaps otherSprite of kind Enemy w

if mySprite » vy (velocity y) = >w o then

destroy othersprite @
play sound ba dingw
else

game over < LOSE @

Jumping on Enemies to Zap them

The blocks in the else section may be different for example if you are using player lives, you will

want your player to lose a life instead.

10.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no

side effects.

65

To check that you are making the most of this pattern you can ask yourself the following

questions::

« When you add this mechanic you may be making the game much easier. Is there
anything else you can do to make it more challenging?
- Can you imagine the player experience? Is there anything you are fogetting or taking for

granted?

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

66

gamePatterns.md

11 Moving Enemies - Animated

Game Mechanics:
Moving / Animated Enemies

moving enemies image

Name: Moving Enemies Animated

Description: In this pattern a static enemy is animated to make some limited movements

around its home position, for example bobbing or bouncing.

Need for Pattern: Having a moving enemy is a way to increase the challenge of the

player. It also gives a sense of movement and excitement to the game.

Related Game Patterns: Add Static Enemy [required], Add Moving Enemies Patrolling

[related]

Coding Concepts involved: Data, Events, Loops

Links to other Computing Patterns: , Change Listener, Systems Dynamics

67

learningDimensions#systems-dynamics
learningDimensions#change-listener
learningDimensions#events
learningDimensions#events
learningDimensions#data
movingEnemiesPatrolling
addStaticEnemy

11.1 How to implement this Pattern in MakeCode

11.1.1 We add enemies like we add food.

We add enemies like we add food to the game. Following this tutorial will add static enemies to
your game. Click on the tilemap image for your first level. Create a totally Red tile in My Tiles.

Add one or two red blocks to your first level.

Show walls (@)

My Tiles Gallen

D

Add Red Blocks

11.1.2 Looping through the tilemap squares

For first line here reads for element value of array of all... This line contains a value and a list.
The loop keeps running until it runs out of a values in the list. In this case create one item of

Food for every yellow block. ### Duplicate the Food Loop Duplicate this loop section.

68

call chooselLevel

start countdown @ (s)

for element wvalue of array of all .v locations

I]uplil:ath

set strawberry* to sprite of kind Food JERECRLLEII]

place strawberry* on top of waluew

set #v at wvaluew

Help

Delete Blocks

Now we will

change the for loop will turn the red squares in a tile map into a sprite of kind of Enemy.

11.1.3 Change the values for our loop to create enemies

Drop the copied loop back into the function after the original one.Change the values of content

of this for loop. Change the yellow square to a red one. Change the name of food1 for the two

blocks for it to mentioned. I'll choose to create a new variable called staticEnemy and change

the image too this time to snake.

Check your code with the example below.

for element walue of array of all v locations

do
set staticEnemy* to sprite D of kind Enemy w

place staticEnemy * on top of valuew

#V at valuew

for element wvaluew of array of all * locations

11.1.4 Create a Collision Listener

We now code what happens when our player overlaps with the enemy our staticEnemy

69

an on player overlap with block from Sprites. Set the second value to be Enemy. Inside the block

drag in from Game block of game over and keep it set to Lose.

on sprite of kind Player v overlaps otherSprite of kind Enemy w

game over LOSE @

Static Enemy Block

11.1.5 Animate our Enemy (Optional)

We can add a bit more challenge to our game by making otherwise static enemies move around

a fixed point using animation.

We alter our static enemies to animate them. To allow us to do this go to Advanced > +

Extensions > Add Animation

70

Advanced

1 e

i=— ArTays

> [onsole

© Extensions

I fog Functions

functionalities

storyboard animation corgio

Scene manager An animation library for A Corgi platformer
sprite

=~ ae

We can now drag in an animate block which has an animation effect on it. Alter it so it matches

the one below in our for each element loop so that it applies to all Enemies. | change the type of

71

animate from the drop down menu to use the simple bobbing in place animation.

for element wvalue of array of all ¥ locations

do

set staticEnemy * to sprite g of kind Enemy w

place staticEnemy* on top of wvaluew

set #v at wvaluew

animate staticEnemy ¥

with bobbing (in place) *

loop

animated enemies image

You can see here that for simplicity’s sake I've have not changed the variable name of

staticEnemy. But you can change it or create a new variable if you want to.

11.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. For example, one side effect that you might have if you already have more than one
level is that enemies from a previous level may appear on your next level. See the Add Levels

tutorial to fix that.
To check that you are making the most of this pattern you can ask yourself the following
questions:

« Are there other types of animations that suit your game.

« Where can you place the animated enemies to maximise the challenge to your game.

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

72

gamePatterns.md
addLevels.md

In this pattern we replace our static enemies with animated enemies. If you want to have both

kinds of enemies then you can do this by following the patterns shown in the add a patrolling

enemy tutorial.

Also this pattern may make your game much more challenging. To balance it out a potential next

step may be to add the jump on enemies pattern to your game if you haven’t already.

73

jumpOnEnemies
movingEnemiesPatrolling
movingEnemiesPatrolling

12 Moving Enemies - Following

Game Mechanics:
Moving / Following Enemies

moving enemies image

Name: Moving Enemies Animated

Description: Here one or more enemies try to chase the player by following them.

Need for Pattern: Having a following enemy is a way to increase the challenge of the
player to reach goals and to collect food. It also gives a sense of movement and

excitement to the game.

Related Game Patterns: Add Animatd Enemy [required], Add Moving Enemies Patrolling

[related]

Coding Concepts involved: Data, Events, Loops

Links to other Computing Patterns: , Change Listener, Systems Dynamics

74

learningDimensions#systems-dynamics
learningDimensions#change-listener
learningDimensions#events
learningDimensions#events
learningDimensions#data
movingEnemiesPatrolling
movingEnemiesAnimated

12.1 How to implement this Pattern in MakeCode

12.1.1 Step by Step instructions

This game mechanic works well when you have enough time to run away from these enemies or
somehow get rid of them by shooting or jumping on them. This tutorial assumes you have

already added a static enemy pattern.

As with static enemies, we need to edit out tilemap and add a new colour of tile to our tilemap

and place one in a location. In this case be sure to change your design to add some black blocks.

add another tile

Now follow the same kind of pattern for creating a static enemy but change the final blocks. I've

chosen a small meteorite from the Gallery here. Having a small follower looks good.

Add a set to follow block from our Sprite section a set followingEnemy to follow mySprite with

speed 40. Set this been to follow mySprite which is your player sprite.

75

for element wvalue of array of all * locations

set followingEnemy + to { sprite {np of kind Enemy w

place followingEnemy * on top of wvaluew

do

set m' at wvalue =

set followingEnemy » follow mySprite« with speed @ e

add another tile

In the block above I've changed the speed of the bee to be slower at 40 than the default 100 as

in this example the player just has to run away from the meteorite.

12.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no

side effects.

To check that you are making the most of this pattern you can ask yourself the following

questions:

« Does this pattern make your game too hard? If so do you need to slow down the
followers or reduce how many there are?

« Are there enough obstacles to dodge around to slow the followers down?

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

This pattern may make your game much more challenging. To balance it out a potential next step

may be to add the jump on enemies pattern to your game if you haven'’t already.

76

jumpOnEnemies
gamePatterns.md

13 Moving Enemies - Patrolling

Game Mechanics:
Moving / Patrolling Enemies

moving enemies image

Name: Patrolling Enemies

Description: In this pattern the enemy moves around in a particular area in a repeating
pattern. This movement is called patrolling. The enemy does not try to seek out the

player.

Need for Pattern: Having a pattern name is a way to increase the challenge of the player
to reach goals and to collect food. It also gives a sense of movement and excitement to

the game.
Related Game Patterns: Add Static Enemy [required], Jumping on Enemies [related]
Coding Concepts involved: Data, Events

Links to other Computing Patterns: , Change Listener, Systems Dynamics

77

learningDimensions#systems-dynamics
learningDimensions#change-listener
learningDimensions#events
learningDimensions#data

13.1 How to implement this Pattern in MakeCode

13.1.1 Step by Step instructions

A common pattern or mechanic in a game is to make the enemy move back and forward like a
soldier on patrol. The easiest way to do this is to create wall blocks which the enemy bounces

between. We can call these kinds of enemies bumpers.

This tutorial assumes you have already added a static enemy pattern. We are going to add
another kind of enemy in the same way. To do this duplicate the for element loop inside your

create level function and add it back into the function.

We need to edit our tilemap and add a new colour of tile to our tilemap and place onein a

location where it can bump between walls. In this example we will use a blue block.

Show walls (@)

My Tiles Gallery

Iy

add another tile

In our createlevels function, we are going to create a loop which finds all the blue blocks and
does something with them. Follow the code example below to do this. You may recognise this

pattern from the way that we create food in our game.

78

for element wvalue ' of array of all » locations

set movingEnemyl® to sprite of kind Bumper ¥

place movingEnemyl ¥ on top of wvaluew

do

set #' at valuew

set movingEnemyl ¥ vx (velocity x)* +to @

Change loop elements1

We need a new kind of sprite called a Bumper. To do this we'll have to make a new kind of sprite.

In the Set My Sprite to block click on the type of sprite and select Add a new kind.

New kind:

Bumper

0k v Cancel ®

patrolling enemies 1

When this is done you can select it from the lists. We will also set our enemy heading off in a left

or right direction. Set the velocity of our moving enemy to 50 (moving right) or -50 (moving left)

We need to set a Collision Listener so that the game is over if the player touches our moving

enemy so create a Listener block as below.

on sprite of kindouerlaps otherSprite of kind Bumper v

game over ¢ LOSE @

Game over elements

79

Then we need to make our bumper enemy change direction when it hits a wall block. You can do
this by copying the following block. You can see the green block is a familiar pattern where we

loop through all the sprites of a particular type in this case.

for element wvalue of array of sprites of kind Bumper =

do
if is walue * hitting wall left = then

set value = v¥ (velocity x) =+ to @

else if is wvalue *+ hitting wall right = then @

set value = vx (velocity x) + +to @

patrolling enemies 2

13.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no

side effects.

To check that you are making the most of this pattern you can ask yourself the following

questions:

« Are your blocks placed in the right place to make sure you enemies patrol in the right
places
« Can place patrolling enemies towards the end of your game in a way that makes it tricky

to get past them?

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

80

gamePatterns.md

This pattern may make your game much more challenging. To balance it out a potential next step

may be to add the Jump on Enemies pattern to your game if you haven't already.

81

14 Add Written Messages

Game Polish:
Add a Game Story with Messages

mechanics space polish and systems

Name: Add Written Messages

Description: The game maker can display instructions and messages to the player at the
start of the game. You can also add messages when something happens in the game. For

example giving new levels a name.

Need for Pattern: Having written messages is a way of giving playing instructions to the
player at the start of the game, giving them clues as they progress or just making the

game more fun to play by adding story elements.

Related Game Patterns: Add Graphical Elements [related]

Coding Concepts involved: Data, Events

Links to other Computing Patterns: , Change Listener

82

learningDimensions#change-listener
learningDimensions#events
learningDimensions#data

14.1 How to implement this Pattern in MakeCode

14.1.1 Step by Step instructions

Find the splash block under the Game section and drag one or more blocks to the beginning of

the on start block.

EEM " Collect all the Apples " @
e " Then find treasure chest” @

set mySprite + to sprite of kind Player =

add messages

You can also get your player to say something when an event happens. For example lets get the

player to say Yum when collecting an apple.

Alter the overlap event code block to add in a sprite say block and set the time.

on sprite of kind Player * overlaps otherSprite of kind Food -

destroy otherSprite @

sprite say for ms @

add messages

14.2 Extra Challenge

You can give your Levels name that come up before your players play them. To do this you will

need to have added different levels to your game.

83

To start with we will create an Array (which is a kind of list) of the different names of the levels.

array of

"Lava Trap Level '

"The Speed Run Level '

"Dungeon Level"

"the Final Run '

add a list

Now add a splash message at the start of your createLevel function. Note how you can use the

level value to pick the right message from your list.

84

array of

"Lava Trap Level '

"The Speed Run Level "

set 1list ¢+ to
"Dungeon Level "

"the Final Run "

add a splash message

14.3 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. For example,

you can ask yourself the following questions:

Check your messages aren’t too long and disappear of the side of the screen

« Check that the messages appear in the right place

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

85

gamePatterns.md

15 Animate Player

mechanics space polish and systems

mechanics space polish and systems
- Name: Animate Player
- Description: The player is animated using different ‘frames’.

- Need for Pattern: This movement helps create a sense of dynamic movement and can

help the game player’s immersion in the game.

« Related Game Patterns: Add Static Enemy [needed before adding this one], Jumping on

Enemies [related]
« Coding Concepts involved: Data

« Links to other Computing Patterns: , Change Listener

15.1 How to implement this Pattern in MakeCode

15.1.1 Simple Animation of Player

We will create a simple animation using different frames of our player. To allow us to do this go

to Advanced > + Extensions > Add Animation Drag in the animation block that you see below.

86

learningDimensions#change-listener
learningDimensions#data

set mySpritew to sprite of kind Playerw

animate mySpritew

simple animation

Click on the frames image to change the different frames of your animation, then interval to
update how quickly the frames update and finally turn loop on so the animation keeps running.
15.1.2 Animated Walking and Jumping using Animation States

See the following https://makecode.com/_ecqJXwWrpJXw

To create more authentic animations which change the direction of the player, show them
walking and still when not moving we will use an animation with states. To start we will have

three simple states moving Left, moving Right and not moving i.e. Idle

To start create an function to create our animation, call it createAnimations and then add a block

to call it at the end of your on start loop.

call createlLevels

LS GLl createAnimations

call createAnimations

Now fill up the createAnimations block. To start add one animation which animates our player as

then move to the left. To allow us to do this make sure you can add animation blocks go to

87

Advanced > + Extensions > Add Animation. Then add the blocks as per the screenshot below.

illilaa Ll createAnimations

set animw® to create animation of Leftwe with interval @ ms

add frame to animw

add frame to animw

attach animation animw* to sprite mySpritew

animate player states1

| have added simple two state animations by selecting different versions of a character from the
Gallery. You can create your own animated player by drawing. Be sure to change your starting

image too at the beginning of your on start loop

on start

set mySpritew to sprite B of kind Player =

Now repeat the pattern for the moving right and not moving / idle states.

88

iilaa bW createfnimations

set animw* to create animation of Leftw with interval @ ns
add frame | " to animw
add frame B) to animw

attach animation animw to sprite mySpritew
set animZw» to create animation of Rightw+ with interval

add frame §) to animw

add frame G to animw

attach animation animZz * to sprite mySprite =

set animie to create animation of Idle » with interval EEGEE ms

add frame [-.:] to animw

attach animation anim3 » to sprite mySprite =

We have now to activate those animations create some code in a on game update loop that will
be always running and listening for changes in conditions. We can use the players velocity in the

x -axis to decide if they are moving left or right or not moving.

89

on game update

if mySprite = vx (velocity x) = <w o then

activate animation Left* on mySprite »
else if mySprite = vx (velocity x) »

activate animation Left* on mySpritew
else

activate animation Idlew on mySpritew

O]

15.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no

side effects.
To check that you are making the most of this pattern you can ask yourself the following
questions:

« Is your animation smooth? Do you need to add more frames?

« Do you want to add more states for jumping?

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

90

gamePatterns.md

16 Pattern Name

L Y
A

‘--

Game Polish:
Make Player Immune

mechanics space polish and systems
Name: Make Player Immune from Enemies
Description: The player is not able to be zapped by enemies.

Need for Pattern: Having player immunity is often needed if you have a system of lives. If
you lose a life but don’t move your player back to the start in a safe place, then the

continuing overlap will cause you to lose all your lives at once.
Related Game Patterns: Add Patrolling Enemy [required], Add Player Lives [required],
Coding Concepts involved: Events

Links to other Computing Patterns: , Change Listener,

16.1 How to implement this Pattern in MakeCode

16.1.1 Step by Step instructions

This pattern is needed when you have player lives and enemies. There is often a side effect

91

learningDimensions#change-listener
learningDimensions#events

where a player can be overlapped with an enemy. The player needs to be made immune from
enemies so that they cannot be harmed and they may also need to be moved. This tutorial

assumes you have patrolling enemies and player lives patterns added to your game.

16.1.2 Add a delay and make Immunity obvious

In your overlap listener for the Bumper enemy type we will also play a sound to make it obvious
that the player has been zapped.

We will also hange the look of the player sprite.

In the loop you will add in a pause when you lose a life. The pause means you cannot be zapped

by players in this period.

=

make player immune

92

16.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. For examples if you have more than one type of enemy, like simple static enemies,

you will need to add this code in those overlap listeners too.
To check that you are making the most of this pattern you can ask yourself the following
guestions:

« Is the length of delay right or does it need to be longer or shorter?

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

93

gamePatterns.md

17 Simple Graphical Effects

Game Polish:
Add Graphical Effects

simple graphical effects

Name: Simple Graphical Effects

Description: A common pattern is to add graphical effects when things happen in the
game. For example the look of a player may change when they get zapped as a way of
showing their death, or you can animate food when it is collected, or enemies when they

get zapped.

Need for Pattern: Having graphical effects is a way of increasing the excitement of the

game and giving game players feedback on what happens in the game.

Related Game Patterns: Jumping on Enemies [related]

Coding Concepts involved: Events

Links to other Computing Patterns: , Change Listener

94

learningDimensions#change-listener
learningDimensions#events

17.1 How to implement this Pattern in MakeCode

17.1.1 Animate Food Collection

Click on the plus sign next to the destroy otherSprite block and you can choose from many
effects that happen to your sprite when the Food gets collected and how soon that effect

happens. In the block below the confetti effects happens very quickly after the Food is touched.

on sprite of kind Player * overlaps otherSprite of kind Food v

destroy otherSprite with confettiv effect for ms @

Animate Food Collection

17.1.2 Animate Enemy getting Zapped

This requires you to have added the Jumping on Enemies pattern. In the on sprite of kind Player
overlaps otherSprite of kind Enemy condition listener loop click on the plus sign to the destroy
otherSprite block and you can choose from many effects that happen to your sprite when the

Food gets collected and how soon that effect happens.

on sprite of kind Player+ overlaps otherSprite of kind Enemy w

mySprite = vy (velocity y) = > o then

destroy otherSprite with firew effect for 15 @

Animate Enemy getting Zapped

17.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no

side effects.

To check that you are making the most of this pattern you can ask yourself the following

95

questions:

« Have you animated all of the events that happen in your game?

« Are the timings right for your game or are they too long or short?

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

A next step you might want to try is to add sound effects when things happen.

96

gamePatterns.md

18 Add Sound Effects

W/

4

BOOM

V&) l\‘

Game Polish:
Add New Sound Effects

add sound effects

Name: Add Sound Effects

Description: A common pattern is to add sound effects when things happen in the game.
For example sounds may play when a player gets zapped, or when food when it is

collected, or when enemies are zapped.

Need for Pattern: Having a sound effects is a way of increasing the excitement of the

game and giving game players feedback on what happens in the game.

Related Game Patterns: Jumping on Enemies [related]

Coding Concepts involved: Events

Links to other Computing Patterns: , Change Listener

97

learningDimensions#change-listener
learningDimensions#events

18.1 How to implement this Pattern in MakeCode

18.1.1 Sound Effect for Food Collection

Click on the plus sign next to the destroy otherSprite block and you can choose from many
effects that happen to your sprite when the Food gets collected and how soon that effect

happens. In the block below the confetti effects happens very quickly after the Food is touched.

on sprite of kind Player+ overlaps otherSprite of kind Food »

destroy othersprite @

play sound ba dingw

Sound Effect Food Collection

18.1.2 Sound Effect for Enemy getting Zapped

This requires you to have added the Jumping on Enemies pattern. In the on sprite of kind Player
overlaps otherSprite of kind Enemy condition listener loop add a block which plays a sound

effect. You can experiment to see which one you like best.

on sprite of kind Player v overlaps otherSprite of kind Enemy =

if mySprite » vy (velocity y) = >w o then

destroy othersSprite @

play sound jump upw

Sound Effect Enemy getting Zapped

18.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no

side effects.

98

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

A next step you might want to try is to add a sound track.

99

gamePatterns.md

19 Add Sound Track

Game Polish:
Adding a Music Soundtrack

add sound track

Name: Add Sound Track
Description: A common pattern is to add sound track or background music to the game.

Need for Pattern: Having a sound track is a way of increasing the excitement of the game

and communicating the feeling of the game to the players.
Related Game Patterns: Add Sound Effects [related]

Coding Concepts involved: Events

19.1 How to implement this Pattern in MakeCode

19.1.1 Sound Track for One Level

If you want to keep the same music looping or if you only have one level then you can add a

soundTrack in a simple way using the code blocks shown below.

100

learningDimensions#events

forever

play melody ﬂ..'....' at tempo @ (bpm)

Sound Track

19.1.2 Sound Effect for Enemy getting Zapped

If you already have more than one level then you may want to change the tune for different

levels. You can see how to do this in the screenshot below.

forever

iF level = =w o then
play melody ﬂ.l'l.'.. at tempo @ (bpm)

—w o then
play melody (@igd | [[[][at tempo @ (bpm)

Sound Track

19.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no

side effects.

101

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

A next step you might want to try is to add sound effects when things happen.

102

gamePatterns.md

20 Add More Levels

Game Mechanics:
Adding More Levels

mechanics space polish and systems
Name: Add More Levels

Description: The player reaches the goal of the first Level of the platformer and then

progresses to the next level (and beyond)

Need for Pattern: Having more than one level is a way increasing the length and
challenge of the game. You can also bring other elements of design and even game

mechanics to new levels.

Coding Concepts involved: Data, Variables,

Links to other Computing Patterns: Systems Dynamics, Change Listener

20.1 Putting the Pattern into Practice

20.1.1 Create a “level” variable

Now we will reate a variable to hold the number of level we are on. We will then be able to

change it. We create this level variable at the end of our on start loop.

103

learningDimensions#change-listener
learningDimensionss#systems-dynamics
learningDimensions#variables
learningDimensions#data

New variable name: (%}

level

Create Variable

call createlevels

Add set Variable

20.1.2 Create a new chooselevel Function

Create a new Function by clicking on the Advanced tab on our toolbar, then Functions And then

click Make a Function. Enter chooselLevel in the white box.

104

Edit Function

Add a parameter T Text 32 Boolean E Number 4 Sprite
Add set Variable

20.1.3 Move tilemap to new Function

Drag only the set tilemap to into the new chooseLevel function by holding down Control on
your Keyboard while you drag the block. Right click and select Format Code to make the screen

tidy.

20.1.4 Add a link to the new function

Drag in the call chooseLevel from Functions to the end of the begining of the createLevel

function.

laatil createlevels

call chooselewvel

for element wvalue of array of all .v locations

game level four

20.1.5 Create the Logic switcher for the Level Design

Now add a Logic block if true then inside the chooseLevel block Move the the set tilemap to
inside the logic block. In the new if true then block replace true with at 0 = 0 block from Logic

section.

105

Right click on the Logic block if level = 0 and duplicate it. Change 0 to 1 in the second block and

drag it back into the chooseLevel function.

Repeat the process again changing the level number to two. Move a game over - win block into

to this gap and delete the tilemap block.

if level v 1IN o T

set tilemap to .

if level =+ =w o then

set tilemap to .

level = =—w o then

game over

®

game level four

106

20.1.6 Change the overlap (change) Listener between Player and Goal Sprite

In our game we have a listener which is always checking to see if there is an overlap between
our Player and the Goal Sprite.
In our starting template this lists only a Game Over - Lose block. Delete that block so the on

overlap listener block is empty.

on sprite of kind Player + owverlaps otherSprite of kind Door =

Remove Game over Block

We will replace it with code that changes the level number and builds a new level and moves the

player back to the starting point.

20.1.7 Code what happens when we complete a level

In the on sprite of kind Player overlaps Door listener block add a change level by 1 block. Next
add call createlevels block to recall the function that does the work of adding the different

blocks to the game.

on sprite of kind Player + overlaps otherSprite of kind Door =

change Levelsw byo

call createlLevels

insert change levels block

20.1.8 Remove any thing that might remain from the last level

If you are not careful then some of the things from the last level like food or enemies may carry

over to your next level.

107

From the Sprites area drag in a destroy all sprites of kind xx block to the start of the createLevel
function. Change the option to Food or Enemy or what ever other kinds of object you may need

to clear for the previous level.

destroy all sprites of kind Food = @

call chooseLevel

for element wvalue of array of all . * locations

set foodl v to sprite of kind Food »

do

Add set Variable

In the image above all previous items of food are removed. You may need to several of these

kinds of blocks for different types of items you add to your game.

20.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. For example check that each time you touch the end goal you progress by a level

and the design matches.

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

108

gamePatterns.md

21 Change Background Image

o

Game Space:
Add Your Own Background Image

mechanics space polish and systems

Name: Change Background Image

Description: This pattern gives you the ability to add a drawn image as the background of

your game.

Need for Pattern: Having a designed background images is a way of increasing the

player’s immersion in the game and their sense of connection to the story.
Related Game Patterns: Add More Levels [related]

- Coding Concepts involved: Data

21.1 How to implement this Pattern in MakeCode

21.1.1 Change the background image

Drag in a set background image to block to replace the set background color block

109

learningDimensions#data

L

change level shape

Then click on the square image and using the tools draw a background and click on done.

camera follow sprite mySprite =

set background image to O

set tilemap to .

call createlLevels

change level shape

21.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. For example,

you can ask yourself the following questions:

110

- Does the colour of your Background interfere with any of your other game elements?

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

111

gamePatterns.md

22 Change Level Design

Game Space:
Change Design of Levels

Change Level Design
Name: Change Level Design

Description: You may want to change the location of the platforms or add more food to

collect or change the location of your end sprite block.

Need for Pattern: Having the ability to change the level space design is important to be

able to change the challenge level of your game.

Coding Concepts involved: Lists,

« Links to other Computing Patterns: Separate Formatting from Data

22.1 How to implement this Pattern in MakeCode

22.1.1 Open the Tilemap Editor and add New Food Items

Click on your tilemap image level 0 for and add in more food items by clicking on the yellow

square in My Tiles and then clicking on squares in your design on the main window.

112

learningDimensions#lists

My Tiles Gallery

I

Change Level Design

When you click Done you will see and can test the updated design in the preview window on the

left.

You can remove Food items by clicking on the eraser (second icon) in the Tile Map editor and

clicking on existing Yellow sqaures.

22.1.2 Use the Tilemap Editor and add in new Platforms

To add or change platforms. Click on your tilemap image and add in more platforms using the tile
gallery. Create a line of tiles to be a platform. Choose a suitable tile for your platform. You can

choose the first, default one or another kind if you want to create variation.

The program does not know that we want these squares to be ones our player can stand one
and not travel through yet. To do this select the Wall Drawing tool and click the same squares.

Then click on Done.

113

Create a row of images and walls

22.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. For example

you can check the following:
« Check your levels aren’t too easy or to tricky

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

114

gamePatterns.md

23 Change Level Shape
mechanics space polish and systems
mechanics space polish and systems

« Name: Change Level Shape

- Description: You may want to make your level longer or you may want to change the
shape of one or more levels completely so they have to jump up instead of travelling

from left to right.

- Need for Pattern: Having different shaped levels is a way of making the game seem
more exciting to explore. It may also change the nature of your game especially if you

make your player climb up or fall down a level which is tall and thin.
- Related Game Patterns: Add More Levels [related]
« Coding Concepts involved: Data, Events

« Links to other Computing Patterns: , Change Listener

23.1 How to implement this Pattern in MakeCode

23.1.1 Change the width of your level to make it longer

The most simple way to add this game pattern is to make your level length longer. To do this click

on your tilemap image and click on the numbers at the bottom left to change them.

The first one is the width so try changing that from 20 to 40. This make the level twice as long.
Fill in the blank space to add your level design.

23.1.2 Change the shape of your level.

Another way to radically change the feel of your game is to make it tall and thin. Try this out by

making the second value (the height) much higher than first value (the width)

115

learningDimensions#change-listener
learningDimensions#events
learningDimensions#data

change level shape

If you want your player to start at the bottom then you'll need to change your starting position.
You may need to do some maths. The position is in pixels. If each square on the tilemap is 16
pixels and it is 40 squares high then the screen will be 40 x 16 pixels high. You can set your player

position based on that.

23.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. For example,

you can ask yourself the following questions:
« Check your levels aren’t too long and therefore feel boring

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

116

gamePatterns.md

24 Key and Door

Game Space:
Keys and Doors

keys and doors

Name: Key and Door

Description: The player needs to collect a key before they can exit the level of the

platformer game.

Need for Pattern: Having a Key and Door is a common pattern which adds to a sense of
exploration to the game. You can use this in combination with using points to collect

other objects.

Related Game Patterns: Add Levels [suggested before adding this one], Collect Points

[related]

Coding Concepts involved: Data, Loops, Events

Links to other Computing Patterns: , Change Listener, Input Event, Systems Dynamics

117

learningDimensions#systems-dynamics
learningDimensions#input-event
learningDimensions#change-listener
learningDimensions#events
learningDimensions#loops
learningDimensions#data

24.1 How to implement this Pattern in MakeCode

24.1.1 Step by Step instructions

In this simple application of the key and door pattern we will keep our current end goal, which in
our starting template was the chest, and add in a new kind of sprite called a key which the player

needs to collect before touching the end goal has an effect.

First add in a new tile colour to represent our key in your Tilemap plan of the first level. There
are more detailed steps on how to do this in the add Static Enemy instructions. But in short

create one tile to represent your location of your key.

To do this click on your tilemap to bring up the editor. Click on My Tiles > + (plus sign) and fill
this new tile entirely with one colour. Then select that tile and place one tile in your level design

where you want your key to be. This is shown in the screenshot below.

key and door 1

Follow the same kind of patter used in adding food to the level by adding a for element loop to
look for the new coloured squares. This is explained in more detail in adding a static enemy
pattern. Change the names of the variable and add in a new sprite type called Key. Change the
image by drawing a key too. This is shown in the screenshot below. You can change the image of

your end goal to a door also if you want to.

118

for element waluew of array of all .v locations

set keyw to sprite of kind Keyw

place keyw on top of wvaluew

set #' at wvaluew

key and door

Add in a condtion listener that collect the key when the player touches it. We need to know if
the player has the key so we will create a new variable called hasKey We will set this to 1 to

show that the player has one key.

on sprite of kind Player » overlaps otherSprite of kind Keyw

destroy otherSprite @

set haskey + tn:no

key and door

Then only progress if the player is touching the end goal and the hasKey variable has been

change to one, as in the screenshot below.

119

on sprite of kind Playver» owverlaps otherSprite of kind Door w

haskey = =w o then

Jame over

®

key and door 4

24.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no

side effects?
To check that you are making the most of this pattern you can ask yourself the following
questions:

« Isone key enough to collect? If you want to add keys more how would you change the

code to make sure your program behaves the way you want it o.

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

120

gamePatterns.md

25 Remixing a Platformer Game - Power Up

Higher Jump

Game Challenge
Power Up: Higher Jump

power up higher jump
Name: Power Up Higher Jump

Description: The player is able to jump higher if they collect a token that acts as a way of

powering up their abilities.

Need for Pattern: Having a Power Up Higher Jump is a way of increasing the interest and
challenge of our game. The designer is able to create areas of the game that the player

can only get to if they collect the power up.
Related Game Patterns: Add Static Enemy [related]

Coding Concepts involved: Data, Loops, Events

Links to other Computing Patterns: , Change Listener, Input Event, Systems Dynamics

121

learningDimensions#systems-dynamics
learningDimensions#input-event
learningDimensions#change-listener
learningDimensions#events
learningDimensions#loops
learningDimensions#data

25.1 How to implement this Pattern in MakeCode

25.1.1 Create our power up sprite

To create a power up we will replicate the for element loop used to display the Food elements
on our game. So the first step is to duplicate that and to make changes to the values. You can
find more detailed instructions on how to do this is the create static enemies pattern. To start
change your level Tilemap design to add a new colour tile to act as our power up and change the

design to include an area that the player would not be able to access with their normal jump.

=

power up higher jump

Follow the code pattern shown in the screenshot below to make the power up appear in our

122

game.

25.1.2 Create a new Variable

To be able to change the jump height of our player we will need to create a new variable for our
game. This will then be used when the player presses the jump button. To do this create a new
variable called jumpVelocity and and set it to the value you have in your on A button pressed

input listener.

123

Change Input

Listener You can now replace the original velocity y (vy) value with this new variable.

124

power up higher jump

25.1.3 Create the new Variable Value

Then we will add a condition listener to see when the player is overlapping this power up. When
they do we can make the power up dissappear and increase the velocity of the players jump. By

increasing the value of the variable that we have just created.

125

power up higher jump

25.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no

side effects.

To check that you are making the most of this pattern you can ask yourself the following

questions:

« Can you jump up to your target area only after you collect your power up?
« Maybe you can make it tricky to access some areas when you have a higher jump, this

increases the challenge by making the player be careful about the order they do things.

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

126

gamePatterns.md

26 Collect all Food before Progressing

Game Challenge
Collect all Food before Exit

mechanics space polish and systems

Name: Collect all Food before Progressing

Description: The player must collect all items of food before progressing.

Need for Pattern: Having our player Collect all Food before Progressing is a way of

increasing the challenge of a game. It works well in combination with having a timer.

Related Game Patterns: Add a Time [related], Add more Levels [related]

Coding Concepts involved: Data,

Links to other Computing Patterns: , Change Listener ## How to implement this Pattern

in MakeCode

26.1.1 Add a Logic Step into our Overlap Listener

To add this patterns we need to add some logic the overlap listener which checks to see if the
player is touching the end goal. Drag in an if then logic block and follow up with a 0 = 0 operator

comparison block. From Advanced > Arrays drag a length of array list block into the first side of

127

learningDimensions#change-listener
learningDimensions#data

the comparison block.

26.1.2 Check the number of Food Items

Check the number of food items by replacing the list variable with a real list. In this case the list
of food items. To do this drag in from Advanced > Arrays a block that says set sprite list to array

of kind Player. Drag this into a blank area near our overlap listener as we only need on part of it.

on sprite of kind Player v overlaps otherSprite of kind Door w

if length of array list» — - o then

game over @
®

collect all food

So Drag the blue block saying array of kind player inside the length of array block, and change

Player to Food. Check with the screenshot below.

128

on sprite of kind Player v overlaps otherSprite of kind Door w

if length of array array of sprites of kind Foodw =w o then

game over @

®

collect all food

26.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no

side effects. For example, do you have to collect all food or can you progress without doing that?

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

129

gamePatterns.md

27 Collect Points

Game Challenge

Gain Points when Collecting

collect points

Name: Collect Points

Description: The player is able to increase their score by collecting food or stars or other

tokens.

Need for Pattern: Having the ability to collect points is a way of increasing player
motivation and adding depth to a platformer level. For example when a player is
replaying a game they may try to maximise the number of points they collect rather than

just having a goal to progress as far as possible in levels.

Related Game Patterns: Add Lives [related], keyAndDoor [related]

Coding Concepts involved: Data, Events

Links to other Computing Patterns: , Change Listener, Systems Dynamics

130

learningDimensions#systems-dynamics
learningDimensions#change-listener
learningDimensions#events
learningDimensions#data

27.1 How to implement this Pattern in MakeCode

27.1.1 Step by Step instructions

Collecting points so that you get one point every time you collect some food (or similar) involves

adding the change score by block to the overlap listener block.

on sprite of kind Player v overlaps otherSprite of kind Food =

destroy otherSprite @

change score by o

collect points

27.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. For example, does your point score only increase by one (or your chosen number)

as you progress

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

Some next steps you might want to add player lives or some kind of enemy if you haven'’t

already.

131

gamePatterns.md

28 Power Up Speed

Game Challenge
Power Up: Player Speed

power up higher speed

Name: Power Up Player Speed

Description: The player is able to move faster if they collect a token that acts as a way of

powering up their abilities.

Need for Pattern: Having a Power Up Faster Player Speed is a way of increasing the
interest and challenge of our game. The designer is able to create time or enemy related

challenges that the player can only beat if they collect the power up.

Related Game Patterns: Add Timer [required], Following Enemies [related], Change

Shape of Levels[related]

Coding Concepts involved: Data, Loops, Events

Links to other Computing Patterns: , Change Listener, Input Event, Systems Dynamics

132

learningDimensions#systems-dynamics
learningDimensions#input-event
learningDimensions#change-listener
learningDimensions#events
learningDimensions#loops
learningDimensions#data
changeLevelShape
changeLevelShape

28.1 How to implement this Pattern in MakeCode

28.1.1 Requirements

This tutorial assumes you have a timer on your platformer.

28.1.2 Create our power up sprite

To create a power up we will replicate the for element loop used to display the Food elements
on our game. So the first step is to duplicate that and to make changes to the values. You can
find more detailed instructions on how to do this is the create static enemeies pattern. To start
change your level Tilemap design to add a new colour tile to act as our power up and change the
value of your timer to be one the player would not be able beat if they travelled at normal

speed.

133

power up speed

In the example above you can see that the layout of the level is longer than the starting one. This

is due to this pattern working well will longer levels.

Follow the code pattern shown in the screenshot below to make the power up appear in our

134

game.

28.1.3 Create a new Variable

To be able to change the speed of our player we will need to create a new variable for our game.
This will then be used when the player presses left and right buttons. To do this create a new
variable called playerSpeedVelocity and and set it to the vx value you have in your move sprite

with buttons block.

You can now replace the original velocity x (vx) value with this new variable.

135

28.1.4 Create the new Variable Value

Then we will add a condition listener to see when the player is overlapping this power up. When
they do we can make the power up dissappear and increase the velocity of the players speed. By

increasing the value of the variable that we have just created.

136

28.1.5 Move Input Controls into a forever block

We need to do one last thing to make it possible for our player speed settings to be updated as
we are playing the game. We need to move the block setting the player speed out of the on start
block into a loop that is constantly being updated. If not that setting is set at the start but never

updated.

137

power up speed

28.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no
side effects. To check that you are making the most of this pattern you can ask yourself the

following questions:
- Can you complete the level only if you after you collect your power up?

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

As a follow up to this maybe you can make changes to the timer for different levels.

138

gamePatterns.md

29 Remixing a Platformer Game - Random

Doubling Enemies

Game Challenge

Doubling Enemies

random doubling enemies
Name: Randomly spawning enemies that double in number

Description: This pattern adds enemies to our game that appear in random places. The

number of enemies on the screen also increases as the game progresses.

Need for Pattern: Having a randomly spawning enemies that double in number is a way

of increasing the Challenge in our game. It is also an example of a feedback loop.

Related Game Patterns: Add Static Enemy [related],

Coding Concepts involved: Data, Loops, Events

Links to other Computing Patterns: Systems Dynamics, Reinforcing Feedback Loops

139

learningDimensions#systems-dynamics
learningDimensions#events
learningDimensions#loops
learningDimensions#data

29.1 How to implement this Pattern in MakeCode

29.1.1 Create our Random Enemy

We will create our randomly appearing enemy by creating a forever loop which creates an
enemy of a type projectile that starts at the side of the screen and moves left. So the enemy
doesn’t always start in the same place we will make the height value (y) random. See the screen
shot below. Add in a pause to the forever loop so it this new projectile happens every 5 seconds

to start with.

forever

set projectilew to projectile from side with wx @ vy o

set projectile = yv +to pick random o - to screen height
pause EECEEE N ms

random doubling enemies

We now code a listener event that creates game over if there is an overlap.

on sprite of kind Player* overlaps otherSprite of kind Projectilew

game over 4 LOSE @

random doubling enemies

29.1.2 Increase Spawn Time

A common pattern is to increase the spawn time of our enemies to increase the challenge. To do
this we will first create a new variable at the start of our game called spawnTime. Replace our

value in the previous fover loop with this variable.

140

forever

set projectilew to projectile from side with wx a vy o
set projectile » y* to pick random o -- to screen height

pause spawnTime * ms

set spawnTime * to (Ll

random doubling enemies

We now need to start to decrease this spawnTime variable. One easy way of doing that is to half
the value every time the event runs by dividing it by two. This creates a reinforcing feedback

loop so things might get crowded with projectiles very soon.

forever

set projectilew to projectile from side with vx @ vy o
projectile = y* to pick random o - to screen height

pause spawnTime = ms

set spawnTime » to spawnTime w +w o

random doubling enemies

Your player will have to be fast.

29.2 Test your Changes and Next Steps

Test your game to check that your changes have the desired behaviour and that there are no

side effects.

To check that you are making the most of this pattern you can ask yourself the following

141

questions:

+ Does the number of enemies increase at too fast a rate? If so how can you change the
rate do it doesn’t double?
« Would you want to have a maximum number of enemies on the screen at once or a

maximum rate of increase to avoid?

This Game Pattern is one of many allowing you to make improvements to your platform game

and to learn coding and wider computing concepts. Find more on the Game Pattern page.

142

gamePatterns.md

	1 Introduction
	1.1 Learn Game Design Patterns by Remixing a MakeCode Platformer
	1.1.1 Remix a Starting Game Template
	1.1.2 Step by Step Instructions from First Principles
	1.1.3 Follow an Example Course

	1.2 About the MakeCode Arcade Tool
	1.3 Ideas behind this Course
	1.3.1 Learning via Hands-on Tinkering
	1.3.2 Playful Learning
	1.3.3 Promoting Participant Choice and Self-Directed Learning
	1.3.4 A Restricted Set of Learning Dimensions
	1.3.5 Starting with the Familiar, Zoom into Detail, Zoom out to Wider Patterns

	1.4 Where to get started?

	2 Game Patterns
	2.1 How to build your own game from the following Game Mechanics
	2.2 Game Mechanics
	2.3 Game Polish
	2.4 Game Space
	2.5 Challenge and Systems

	3 Learning Dimensions of this Project
	3.1 Coding Concepts
	3.1.1 Sequences
	3.1.2 Variables
	3.1.3 Logic
	3.1.4 Loops
	3.1.5 Arrays
	3.1.6 Creating Functions
	3.1.7 Events
	Input Event
	Change Listener

	3.2 Systems Patterns
	3.2.1 Systems Elements
	3.2.2 Systems Dynamics
	3.2.3 Reinforcing Feedback Loops
	3.2.4 Balancing Feedback Loops

	3.3 Design Practices
	3.3.1 Defining Design Practices
	3.3.2 Goal Setting
	3.3.3 Being Incremental and Iterative
	3.3.4 Developing Shared Vocabulary
	3.3.5 Collaborative Production
	3.3.6 Reusing and Remixing
	3.3.7 Web Navigation
	3.3.8 Problem Solving
	3.3.9 Version Control
	3.3.10 Debugging
	3.3.11 Game Testing and Publishing

	4 Methods
	Methods Using Missions
	Methods Using the Learning Map / Design Process
	Other Methods
	4.2 Discovering Game Mechanics
	4.2.1 Identify Game Mechanics in Existing Games

	4.3 Improving Half Baked Games
	4.3.1 Example Activity - Fix the Broken Game

	4.4 Circle / Physical / Drama / Reflection Games
	4.4.1 Example Activity - Reflection Web Activity to End a Session
	4.4.2 Line Up Reflection Activity
	4.4.3 Example Activity - A Game and Tips to Keep track of our Progress and our Games
	4.4.4 Example Activity - Bomb and Shield
	4.4.5 Fun Project Evaluation and Reflection

	4.5 Drawing on Home and Game Cultures
	4.5.1 Using Hardware Device to Increase Motivation
	4.5.2 Showcasing to and External / Authentic Audience
	4.5.3 Exploring - What kind of Game Player / Maker are You?
	4.5.4 Step by Step Tutorials - (suits Planners especially)
	4.5.5 Adding Game Patterns to a Starting Template (suits Magpies especially)
	4.5.6 Extra Missions (suits Socializers and Griefers especially)

	4.6 Predicting Code Outcomes via a Matching Game
	4.6.1 Matching Games to Code Game

	4.7 Guidance on Running Creative Design Sessions
	4.7.1 Creative Design Game Making Session Summary
	4.7.2 Creative Design Checklist
	4.7.3 More Detail on Creative Design Game Making Sessions
	4.7.4 Revising your Design Goals in the Final Stages

	4.8 Supporting Debugging
	4.8.1 Describe and Post a problem to your peers or the MakeCode forum
	4.8.2 Understanding types of errors and dealing with them

	5 Missions
	Methods Using Missions
	5.2 Using Game Design Patterns as Missions
	5.3 Main Macro Mission
	5.4 Navigating with Game Design Patterns
	5.4.1 Improving Half Baked Games
	5.4.2 Extra Missions (suits Socializers and Griefers especially)

	6 Add a Static Enemy
	6.1 How to implement this Pattern in MakeCode
	6.1.1 Add Static Enemies to your Tilemap
	6.1.2 Create a Collision Listener

	6.2 Test your game and Next Steps

	7 Add Player Lives
	7.1.1 Adding a starting amount of lives
	7.1.2 Change the overlap loop for our Enemy
	7.2 Reflecting on what’s happening
	7.3 Test your Changes and Next Steps

	8 Add a timer
	8.1 How to implement this Pattern in MakeCode
	8.1.1 Simple Timer for each level
	8.1.2 Have different timer values for each level

	8.2 Test your Changes and Next Steps

	9 Double Jump
	9.1 How to implement this Pattern in MakeCode
	9.1.1 Create a “canDouble Jump” variable
	9.1.2 Create a Logic block to test if player can jump or not
	9.1.3 Reset canDoubleJump variable

	9.2 Test your Changes and Next Steps

	10 Jumping on Enemies to Zap them
	10.1 How to implement this Pattern in MakeCode
	10.1.1 Add a Condition for the Overlap Listener block

	10.2 Test your Changes and Next Steps

	11 Moving Enemies - Animated
	11.1 How to implement this Pattern in MakeCode
	11.1.1 We add enemies like we add food.
	11.1.2 Looping through the tilemap squares
	11.1.3 Change the values for our loop to create enemies
	11.1.4 Create a Collision Listener
	11.1.5 Animate our Enemy (Optional)

	11.2 Test your Changes and Next Steps

	12 Moving Enemies - Following
	12.1 How to implement this Pattern in MakeCode
	12.1.1 Step by Step instructions

	12.2 Test your Changes and Next Steps

	13 Moving Enemies - Patrolling
	13.1 How to implement this Pattern in MakeCode
	13.1.1 Step by Step instructions

	13.2 Test your Changes and Next Steps

	14 Add Written Messages
	14.1 How to implement this Pattern in MakeCode
	14.1.1 Step by Step instructions

	14.2 Extra Challenge
	14.3 Test your Changes and Next Steps

	15 Animate Player
	15.1 How to implement this Pattern in MakeCode
	15.1.1 Simple Animation of Player
	15.1.2 Animated Walking and Jumping using Animation States

	15.2 Test your Changes and Next Steps

	16 Pattern Name
	16.1 How to implement this Pattern in MakeCode
	16.1.1 Step by Step instructions
	16.1.2 Add a delay and make Immunity obvious

	16.2 Test your Changes and Next Steps

	17 Simple Graphical Effects
	17.1 How to implement this Pattern in MakeCode
	17.1.1 Animate Food Collection
	17.1.2 Animate Enemy getting Zapped

	17.2 Test your Changes and Next Steps

	18 Add Sound Effects
	18.1 How to implement this Pattern in MakeCode
	18.1.1 Sound Effect for Food Collection
	18.1.2 Sound Effect for Enemy getting Zapped

	18.2 Test your Changes and Next Steps

	19 Add Sound Track
	19.1 How to implement this Pattern in MakeCode
	19.1.1 Sound Track for One Level
	19.1.2 Sound Effect for Enemy getting Zapped

	19.2 Test your Changes and Next Steps

	20 Add More Levels
	20.1 Putting the Pattern into Practice
	20.1.1 Create a “level” variable
	20.1.2 Create a new chooseLevel Function
	20.1.3 Move tilemap to new Function
	20.1.4 Add a link to the new function
	20.1.5 Create the Logic switcher for the Level Design
	20.1.6 Change the overlap (change) Listener between Player and Goal Sprite
	20.1.7 Code what happens when we complete a level
	20.1.8 Remove any thing that might remain from the last level

	20.2 Test your Changes and Next Steps

	21 Change Background Image
	21.1 How to implement this Pattern in MakeCode
	21.1.1 Change the background image

	21.2 Test your Changes and Next Steps

	22 Change Level Design
	22.1 How to implement this Pattern in MakeCode
	22.1.1 Open the Tilemap Editor and add New Food Items
	22.1.2 Use the Tilemap Editor and add in new Platforms

	22.2 Test your Changes and Next Steps

	23 Change Level Shape
	23.1 How to implement this Pattern in MakeCode
	23.1.1 Change the width of your level to make it longer
	23.1.2 Change the shape of your level.

	23.2 Test your Changes and Next Steps

	24 Key and Door
	24.1 How to implement this Pattern in MakeCode
	24.1.1 Step by Step instructions

	24.2 Test your Changes and Next Steps

	25 Remixing a Platformer Game - Power Up Higher Jump
	25.1 How to implement this Pattern in MakeCode
	25.1.1 Create our power up sprite
	25.1.2 Create a new Variable
	25.1.3 Create the new Variable Value

	25.2 Test your Changes and Next Steps

	26 Collect all Food before Progressing
	26.1.1 Add a Logic Step into our Overlap Listener
	26.1.2 Check the number of Food Items
	26.2 Test your Changes and Next Steps

	27 Collect Points
	27.1 How to implement this Pattern in MakeCode
	27.1.1 Step by Step instructions

	27.2 Test your Changes and Next Steps

	28 Power Up Speed
	28.1 How to implement this Pattern in MakeCode
	28.1.1 Requirements
	28.1.2 Create our power up sprite
	28.1.3 Create a new Variable
	28.1.4 Create the new Variable Value
	28.1.5 Move Input Controls into a forever block

	28.2 Test your Changes and Next Steps

	29 Remixing a Platformer Game - Random Doubling Enemies
	29.1 How to implement this Pattern in MakeCode
	29.1.1 Create our Random Enemy
	29.1.2 Increase Spawn Time

	29.2 Test your Changes and Next Steps

